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Problem Statement



Physical Model : Melting + Flow
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Fig. 1. The moving interface.
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Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ
(t
)

 

 

s(t), state
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e↵ects govern the evolution of the inhibitor in the tumor, the following
reaction-di↵usion equation is also obtained
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ŝ
(t
)

 

 

s(t), state
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some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
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design with a measurement of temperature at one boundary,
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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coe�cient, �B is a constant nutrient concentration in vasculature (blood
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is utilized and the controller is proved to keep positive with
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with phase transition which appears in various situations
of nature and engineering, its control or estimation related
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application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
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e↵ects govern the evolution of the inhibitor in the tumor, the following
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Objective: Design heat control qc(t) to achieve

s(t)→ sr, T (x, t)→ Tm, as t→∞
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

liquid solid

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t) T (x, t)

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

u(t)
E{}=0
V{}
hW i
sFdhW i
�L
0
Tm



0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ
(t
)

 

 

s(t), state
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t)

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ
(t
)

 

 

s(t), state
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Neutralizes the energy growth Promotes the energy growth

Intuition : sr should be chosen sufficiently far from s0 depending on T0(x) and b.



Main Results

Theorem 1 [Counter-convection]
Suppose b > 0. Consider the control law

qc(t) =
kb

2α
(T (0, t)− Tm)− ck

(
1

α

∫ s(t)
0

cosh
(
b

2α
x

)
e
b
2αx(T (x, t)− Tm)dx

+
2α

bβ
cosh

(
b

2α
s(t)

)(
e
b
2αs(t) − e

b
2αsr

))
,

Then, for any sr verifying setpoint restriction

sr > s0 +
2α

b
ln
(
1+

bβ

2α2

∫ s0
0

(T0(x)− Tm) dx
)
,

the setpoint (Tm, sr) is exponentially stable in H1-norm.

Note : limit b→∞ yields the restriction sr > s0 (unrestricted as fixed domain).
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Theorem 2 [Regular-convection]
Suppose b < 0. Consider the same control law as counter-convection.
Assume (T0(x), s0) satisfy initial condition requirement

∫ s0
0
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,

the setpoint (Tm, sr) is exponentially stable in H1-norm.

b > 0 b = 0 b < 0
I.C. Restriction None None Yes

Setpoint Restriction Less than ? ? More than ?
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Control Design



Change of variables

Reference errors

u(x, t) = (T (x, t)− Tm) e
b
2αx, X(t) =

2α

b

(
e
b
2αs(t) − e

b
2αsr

)
.

(u,X)-system

PDE ut(x, t) = αuxx(x, t)− λu(x, t), 0 < x < s(t)

ux(0, t) = −U(t), u(s(t), t) = 0,

ODE Ẋ(t) = −βux(s(t), t),

where

λ :=
b2

4α
, U(t) :=

qc(t)

k
−

b

2α
(T (0, t)− Tm).
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Model validity

Lemma If U(t) > 0 ∀t > 0, then u(x, t) > 0 & ṡ(t) > 0 for ∀x ∈ (0, s(t))

∀t > 0 which verifies

T (x, t) > Tm, ∀x ∈ (0, s(t)), ∀t > 0

Proof is by maximum principle
Corollary With b > 0 (counter-convection), U(t) > 0 implies qc(t) > 0.

Note : With b < 0 (regular-convection), U(t) > 0 does not ensure qc(t) > 0.
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∀t > 0 which verifies

T (x, t) > Tm, ∀x ∈ (0, s(t)), ∀t > 0

Proof is by maximum principle

Lemma With b > 0 (counter-convection), U(t) > 0 implies qc(t) > 0 .

Note : With b < 0 (regular-convection), U(t) > 0 does not ensure qc(t) > 0.



Design Procedure

• Backstepping transformation
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Proposition Provided U(0) > 0, the followings hold

U(t) > 0, ∗ qc(t) > 0 with b > 0

u(x, t) > 0, ṡ(t) > 0, ∗ model valid for both b

s0 < s(t) < sr, ∗ no overshoot for both b

Lemma Target (w,X)-sys. is exp. stable with ṡ(t) > 0 & s0 < s(t) < sr.
Proof : Lyapunov analysis

⇓
Lemma (T, s)-sys. is exp. stable at the setpoint (Tm, sr).
Proof : Invertibility of transformations with s0 < s(t) < sr

Concludes the theorems.
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Simulation & Future Work



Numerical Simulation
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Future Work

• Two-phase Stefan problem
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t) T (x, t)

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

• Extrusion for 3D-printing

melt 
polymer

polymer 
granules

faucet

heater

screw


