Thermodynamic Modeling and Control of Screw Extruder for 3D Printing

Shumon Koga, David Straub, Mamadou Diagne, Miroslav Krstic

University of California, San Diego

ACC 2018

Schematic of Screw Extruder

Schematic of Screw Extruder

Schematic of Screw Extruder

Chosen values : *b* (extrusion speed), q^* (outlet heater), T_b (barrel temp.), Control : $q_f(t)$ (inlet heat by mixing fed granules with different temperature)

Want to avoid

Ink run out

overheating

Problem : Stabilize ratio of granules/melt polymer

Goal : Design cooling heat $q_f(t)$ to achieve $s(t) \rightarrow s_r$.

Thermodynamic Modelling

PDEs (solid & liquid)

$$\frac{\partial T_{\mathsf{s}}}{\partial t}(x,t) = \alpha_{\mathsf{s}} \frac{\partial^2 T_{\mathsf{s}}}{\partial x^2}(x,t) - b \frac{\partial T_{\mathsf{s}}}{\partial x}(x,t) + h_{\mathsf{s}} \left(T_{\mathsf{b}} - T_{\mathsf{s}}(x,t)\right), \text{ for } 0 < x < s(t),$$
$$\frac{\partial T_{\mathsf{l}}}{\partial t}(x,t) = \alpha_{\mathsf{l}} \frac{\partial^2 T_{\mathsf{l}}}{\partial x^2}(x,t) - b \frac{\partial T_{\mathsf{l}}}{\partial x}(x,t) + h_{\mathsf{l}} \left(T_{\mathsf{b}} - T_{\mathsf{l}}(x,t)\right), \text{ for } s(t) < x < L,$$

Thermodynamic Modelling

PDEs (solid & liquid)

$$\frac{\partial T_{\mathsf{S}}}{\partial t}(x,t) = \alpha_{\mathsf{S}} \frac{\partial^2 T_{\mathsf{S}}}{\partial x^2}(x,t) - b \frac{\partial T_{\mathsf{S}}}{\partial x}(x,t) + h_{\mathsf{S}}(T_{\mathsf{b}} - T_{\mathsf{S}}(x,t)), \text{ for } 0 < x < s(t),$$

$$\frac{\partial T_{\mathsf{I}}}{\partial t}(x,t) = \alpha_{\mathsf{I}} \frac{\partial^2 T_{\mathsf{I}}}{\partial x^2}(x,t) - b \frac{\partial T_{\mathsf{I}}}{\partial x}(x,t) + h_{\mathsf{I}}(T_{\mathsf{b}} - T_{\mathsf{I}}(x,t)), \text{ for } s(t) < x < L,$$
BCs

$$\frac{\partial T_{\mathsf{S}}}{\partial x}(0,t) = -\frac{q_{\mathsf{f}}(t)}{k_{\mathsf{S}}}, \quad \frac{\partial T_{\mathsf{I}}}{\partial x}(L,t) = \frac{q_{\mathsf{m}}^{*}}{k_{\mathsf{I}}}$$

 $T_{\mathsf{S}}(\boldsymbol{s(t)},t) = T_{\mathsf{I}}(\boldsymbol{s(t)},t) = T_{\mathsf{m}},$

Thermodynamic Modelling

PDEs (solid & liquid)

$$\frac{\partial T_{\mathsf{S}}}{\partial t}(x,t) = \alpha_{\mathsf{S}} \frac{\partial^2 T_{\mathsf{S}}}{\partial x^2}(x,t) - b \frac{\partial T_{\mathsf{S}}}{\partial x}(x,t) + h_{\mathsf{S}} \left(T_{\mathsf{b}} - T_{\mathsf{S}}(x,t)\right), \text{ for } 0 < x < s(t),$$

$$\frac{\partial T_{\mathsf{I}}}{\partial t}(x,t) = \alpha_{\mathsf{I}} \frac{\partial^2 T_{\mathsf{I}}}{\partial x^2}(x,t) - b \frac{\partial T_{\mathsf{I}}}{\partial x}(x,t) + h_{\mathsf{I}}(T_{\mathsf{b}} - T_{\mathsf{I}}(x,t)), \text{ for } s(t) < x < L,$$

BCs

$$\frac{\partial T_{\mathsf{S}}}{\partial x}(0,t) = -\frac{q_{\mathsf{f}}(t)}{k_{\mathsf{S}}}, \quad \frac{\partial T_{\mathsf{I}}}{\partial x}(L,t) = \frac{q_{\mathsf{m}}^{*}}{k_{\mathsf{I}}}$$

$$T_{\mathsf{S}}(\boldsymbol{s(t)},t) = T_{\mathsf{I}}(\boldsymbol{s(t)},t) = T_{\mathsf{m}},$$

ODE (Interface dynamics)

$$\dot{s}(t) = \bar{\beta} \left(k_{\mathsf{S}} \frac{\partial T_{\mathsf{S}}}{\partial x} (s(t), t) - k_{\mathsf{I}} \frac{\partial T_{\mathsf{I}}}{\partial x} (s(t), t) \right)$$

Model valid iff

$$egin{aligned} T_s(x,t) \leq T_m, & ext{for} \quad orall x \in (0,s(t)), & orall t > 0 \ T_l(x,t) \geq T_m, & ext{for} \quad orall x \in (s(t),L), & orall t > 0 \end{aligned}$$

Model valid iff

$$T_s(x,t) \leq T_m$$
, for $\forall x \in (0,s(t)), \quad \forall t > 0$
 $T_l(x,t) \geq T_m$, for $\forall x \in (s(t),L), \quad \forall t > 0$

Steady-State (SS)

$$\begin{cases} T_{\mathsf{l},\mathsf{eq}}(x) = p_1 e^{q_1(x-s_{\mathsf{r}})} + p_2 e^{q_2(x-s_{\mathsf{r}})} + T_{\mathsf{b}}, \\ T_{\mathsf{s},\mathsf{eq}}(x) = p_3 e^{q_3(x-s_{\mathsf{r}})} + p_4 e^{q_4(x-s_{\mathsf{r}})} + T_{\mathsf{b}}, \end{cases}$$

where $p_i \& q_i$ are parameters calculated by known physical values. $\star \text{ If } T_b = T_m \& q_m^* = 0$, then $T_{s,eq}(x) = T_{l,eq}(x) = T_m$. Model valid iff

$$T_s(x,t) \leq T_m$$
, for $\forall x \in (0,s(t)), \forall t > 0$
 $T_l(x,t) \geq T_m$, for $\forall x \in (s(t),L), \forall t > 0$

Steady-State (SS)

$$\begin{cases} T_{\mathsf{l},\mathsf{eq}}(x) = p_1 e^{q_1(x-s_{\mathsf{r}})} + p_2 e^{q_2(x-s_{\mathsf{r}})} + T_{\mathsf{b}}, \\ T_{\mathsf{s},\mathsf{eq}}(x) = p_3 e^{q_3(x-s_{\mathsf{r}})} + p_4 e^{q_4(x-s_{\mathsf{r}})} + T_{\mathsf{b}}, \end{cases}$$

where $p_i \& q_i$ are parameters calculated by known physical values. $\star \text{ If } T_b = T_m \& q_m^* = 0$, then $T_{s,eq}(x) = T_{l,eq}(x) = T_m$.

Lemma : If the barrel temperature satisfies

$$T_{\mathsf{m}} - \underline{q} \le T_{\mathsf{b}} \le T_{\mathsf{m}} + \overline{q}$$

where $q \& \bar{q}$ are parameters calculated by known physical values, then $T_{s,eq}(x) \leq T_m \& T_{l,eq}(x) \geq T_m$.

Assumption : Liquid temperature is at SS, i.e., $T_l(x, t) = T_{l,eq}(x)$

Assumption : Liquid temperature is at SS, i.e., $T_l(x,t) = T_{l,eq}(x)$

Reference Error States

.

$$u(x,t) = k_{s}(T_{s,eq}(x) - T_{s}(x,t)), \quad X(t) = s(t) - s_{r}$$

Assumption : Liquid temperature is at SS, i.e., $T_l(x,t) = T_{l,eq}(x)$

Reference Error States

$$u(x,t) = k_{s}(T_{s,eq}(x) - T_{s}(x,t)), \quad X(t) = s(t) - s_{r}$$

Reference Error System

.

$$\begin{aligned} \frac{\partial u}{\partial t}(x,t) &= \alpha_{\rm S} \frac{\partial^2 u}{\partial x^2}(x,t) - b \frac{\partial u}{\partial x}(x,t) - h_{\rm S} u(x,t), \\ \frac{\partial u}{\partial x}(0,t) &= -U(t), \quad u(s(t),t) = k_{\rm S}(T_{\rm S,eq}(s(t)) - T_{\rm m}), \\ \dot{X}(t) &= -\bar{\beta} \frac{\partial u}{\partial x}(s(t),t) + \bar{\beta} \left(k_{\rm S} T_{\rm S,eq}'(s(t)) - k_{\rm I} T_{\rm I,eq}'(s(t)) \right), \end{aligned}$$

Assumption : Liquid temperature is at SS, i.e., $T_l(x,t) = T_{l,eq}(x)$

Reference Error States

$$u(x,t) = k_{s}(T_{s,eq}(x) - T_{s}(x,t)), \quad X(t) = s(t) - s_{r}$$

Reference Error System

.

$$\begin{aligned} \frac{\partial u}{\partial t}(x,t) &= \alpha_{\rm S} \frac{\partial^2 u}{\partial x^2}(x,t) - b \frac{\partial u}{\partial x}(x,t) - h_{\rm S} u(x,t), \\ \frac{\partial u}{\partial x}(0,t) &= -U(t), \quad u(s(t),t) = k_{\rm S}(T_{\rm S,eq}(s(t)) - T_{\rm m}), \\ \dot{X}(t) &= -\bar{\beta} \frac{\partial u}{\partial x}(s(t),t) + \bar{\beta} \left(k_{\rm S} T_{\rm S,eq}'(s(t)) - k_{\rm I} T_{\rm I,eq}'(s(t)) \right), \end{aligned}$$

Linearize blue eq. around $s(t) \approx s_r$.

Linearized Reference Error System

$$\begin{aligned} \frac{\partial u}{\partial t}(x,t) &= \alpha_{\rm S} \frac{\partial^2 u}{\partial x^2}(x,t) - b \frac{\partial u}{\partial x}(x,t) - h_{\rm S} u(x,t), \\ \frac{\partial u}{\partial x}(0,t) &= -U(t), \quad u(s(t),t) = CX(t), \\ \dot{X}(t) &= AX(t) - \bar{\beta} \frac{\partial u}{\partial x}(s(t),t), \end{aligned}$$

where C & A are obtained by known values, and C > 0.

Linearized Reference Error System

$$\frac{\partial u}{\partial t}(x,t) = \alpha_{\rm S} \frac{\partial^2 u}{\partial x^2}(x,t) - b \frac{\partial u}{\partial x}(x,t) - h_{\rm S} u(x,t),$$
$$\frac{\partial u}{\partial x}(0,t) = -U(t), \quad u(s(t),t) = CX(t),$$
$$\dot{X}(t) = AX(t) - \bar{\beta} \frac{\partial u}{\partial x}(s(t),t),$$

where C & A are obtained by known values, and C > 0. Backsteppinng Transformation

$$\overline{\beta} \quad \int^{s(t)} dt = 0$$

$$w(x,t) = u(x,t) - \frac{\beta}{\alpha_{\mathsf{S}}} \int_{x}^{s(t)} \phi(x-y)u(y,t)dy - \phi(x-s(t))X(t),$$

Linearized Reference Error System

$$\frac{\partial u}{\partial t}(x,t) = \alpha_{\rm S} \frac{\partial^2 u}{\partial x^2}(x,t) - b \frac{\partial u}{\partial x}(x,t) - h_{\rm S} u(x,t),$$
$$\frac{\partial u}{\partial x}(0,t) = -U(t), \quad u(s(t),t) = CX(t),$$
$$\dot{X}(t) = AX(t) - \bar{\beta} \frac{\partial u}{\partial x}(s(t),t),$$

where C & A are obtained by known values, and C > 0. Backsteppinng Transformation

$$w(x,t) = u(x,t) - \frac{\overline{\beta}}{\alpha_{\mathsf{S}}} \int_{x}^{s(t)} \phi(x-y)u(y,t)dy - \phi(x-s(t))X(t),$$

Target System

$$\frac{\partial w}{\partial t}(x,t) = \alpha_{\rm s} \frac{\partial^2 w}{\partial x^2}(x,t) - b \frac{\partial w}{\partial x}(x,t) - h_{\rm s} w(x,t) + \dot{s}(t) \phi'(x-s(t)) X(t), \quad 0 < x < s(t) \frac{\partial w}{\partial x}(0,t) = \frac{b}{2\alpha_{\rm s}} w(0,t), \quad w(s(t),t) = C X(t), \dot{X}(t) = (A-c) X(t) - \bar{\beta} \frac{\partial w}{\partial x}(s(t),t),$$

$$U(t) = -\frac{b}{2\alpha_{\rm S}}u(0,t) - \frac{\bar{\beta}}{\alpha_{\rm S}}\int_0^{s(t)} f(x)u(x,t)dx - f(s(t))X(t),$$

where $f(x) = \phi'(-x) - \gamma\phi(-x).$

$$U(t) = -\frac{b}{2\alpha_{\rm S}}u(0,t) - \frac{\bar{\beta}}{\alpha_{\rm S}}\int_0^{s(t)} f(x)u(x,t)dx - f(s(t))X(t),$$

where $f(x) = \phi'(-x) - \gamma\phi(-x).$

Theorem : Under $T_b = T_m \& q_m^* = 0$, the control law makes the closed-loop system exponentially stable in the norm $||T_s(x,t) - T_{s,eq}(x)||_{\mathcal{H}_1}^2 + (s(t) - s_r)^2$

$$U(t) = -\frac{b}{2\alpha_{\rm S}}u(0,t) - \frac{\bar{\beta}}{\alpha_{\rm S}}\int_0^{s(t)} f(x)u(x,t)dx - f(s(t))X(t),$$

where $f(x) = \phi'(-x) - \gamma\phi(-x).$

Theorem : Under $T_b = T_m \& q_m^* = 0$, the control law makes the closed-loop system exponentially stable in the norm $||T_s(x,t) - T_{s,eq}(x)||_{\mathcal{H}_1}^2 + (s(t) - s_r)^2$

Note : Under $T_b = T_m \& q_m^* = 0$, the problem is equivalent to

$$\begin{aligned} \frac{\partial u}{\partial t}(x,t) &= \alpha_{\rm S} \frac{\partial^2 u}{\partial x^2}(x,t) - b \frac{\partial u}{\partial x}(x,t) - h_{\rm S} u(x,t), \\ \frac{\partial u}{\partial x}(0,t) &= -U(t), \quad u(s(t),t) = 0, \\ \dot{X}(t) &= -\bar{\beta} \frac{\partial u}{\partial x}(s(t),t), \end{aligned}$$

$$U(t) = -\frac{b}{2\alpha_{\rm S}}u(0,t) - \frac{\bar{\beta}}{\alpha_{\rm S}}\int_0^{s(t)} f(x)u(x,t)dx - f(s(t))X(t),$$

where $f(x) = \phi'(-x) - \gamma\phi(-x).$

Theorem : Under $T_b = T_m \& q_m^* = 0$, the control law makes the closed-loop system exponentially stable in the norm $||T_s(x,t) - T_{s,eq}(x)||_{\mathcal{H}_1}^2 + (s(t) - s_r)^2$

Note : Under $T_b = T_m \& q_m^* = 0$, the problem is equivalent to

$$\frac{\partial u}{\partial t}(x,t) = \alpha_{\rm S} \frac{\partial^2 u}{\partial x^2}(x,t) - b \frac{\partial u}{\partial x}(x,t) - h_{\rm S} u(x,t),$$
$$\frac{\partial u}{\partial x}(0,t) = -U(t), \quad u(s(t),t) = 0,$$
$$\dot{X}(t) = -\bar{\beta} \frac{\partial u}{\partial x}(s(t),t),$$

Apply the designed control to the *original two-phase model* in numerical simulation

Numerical Simulation

L = 10 [cm], $s_r = 5$ [cm], T_b = 145 [°C], T_m = 135 [°C], $q_m^* = 100$ [W/m²]

Numerical Simulation

The boundary temperature remains a reasonable value

Future Work

• Observer-based output feedback control

• Relax assumption of $T_l(x,t) = T_{l,eq}(x)$, and design for two-phase dynamics

• Experimental verification of thermodynamic model