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Control : Cooling heat at inlet by mixing granules with different temperature
Objective : Stabilize ratio of granules/melt polymer
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e↵ects govern the evolution of the inhibitor in the tumor, the following
reaction-di↵usion equation is also obtained
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The dynamics of the moving interface is
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s(t)2ṡ(t) =

Z s(t)

0
µ
�
� � ˜̃�

�
r2dr (3)

aba

1

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Fig. 1. The moving interface.
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Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ
(t
)

 

 

s(t), state
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boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t) � b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t) � b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t) � kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x) � bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x) � bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:

@�

@t
(r, t) =

D1

r2

@

@r

✓
r2@�

@r
(r, t)

◆
+ �(�B � �(r, t)) � �� � g1(�, �),

0 < r < R(t). (1)

where �(r, t) is nutrient concentration of the tumor, D1 is the di�usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e�ects govern the evolution of the inhibitor in the tumor, the following
reaction-di�usion equation is also obtained
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◆
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The dynamics of the moving interface is

1

3
s(t)2ṡ(t) =

Z s(t)

0
µ
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� � ˜̃�

�
r2dr (3)
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exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
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some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
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design with a measurement of temperature at one boundary,
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t) � b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t) � b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t) � kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x) � bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x) � bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)

Control : Cooling heat at inlet by mixing granules with different temperature
Objective : Stabilize ratio of granules/melt polymer
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:

@�

@t
(r, t) =

D1

r2

@

@r

✓
r2@�

@r
(r, t)

◆
+ �(�B � �(r, t)) � �� � g1(�, �),

0 < r < R(t). (1)

where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e↵ects govern the evolution of the inhibitor in the tumor, the following
reaction-di↵usion equation is also obtained
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(r, t) =

D2

r2

@

@r

✓
r2@�
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(r, t)

◆
� g2(�, �), 0 < r < R(t) (2)

The dynamics of the moving interface is

1

3
s(t)2ṡ(t) =

Z s(t)

0
µ
�
� � ˜̃�

�
r2dr (3)
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ŝ
(t
)

 

 

s(t), state
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Control of the Tumor Growth Described by Free

Boundary Problem
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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where �(r, t) is nutrient concentration of the tumor, D1 is the di�usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e�ects govern the evolution of the inhibitor in the tumor, the following
reaction-di�usion equation is also obtained
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exponential stability of sum of the moving interface,
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through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
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Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.
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with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t) � b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t) � b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t) � kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x) � bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x) � bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:

@�

@t
(r, t) =

D1

r2

@

@r

✓
r2@�

@r
(r, t)

◆
+ �(�B � �(r, t)) � �� � g1(�, �),

0 < r < R(t). (1)

where �(r, t) is nutrient concentration of the tumor, D1 is the di�usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e�ects govern the evolution of the inhibitor in the tumor, the following
reaction-di�usion equation is also obtained

@�
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(r, t) =

D2

r2

@

@r

✓
r2@�

@r
(r, t)

◆
� g2(�, �), 0 < r < R(t) (2)

The dynamics of the moving interface is

1

3
s(t)2ṡ(t) =

Z s(t)

0
µ
�
� � ˜̃�

�
r2dr (3)
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
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with phase transition which appears in various situations
of nature and engineering, its control or estimation related
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application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t) � b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t) � b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t) � kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x) � bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x) � bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)

Chosen values : b (extrusion speed), q∗ (outlet heater), Tb (barrel temp.),
Control : qf(t) (inlet heat by mixing fed granules with different temperature)
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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vessel), and � is the rate of blood-tissue transfer per unit length (assumed
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of nature and engineering, its control or estimation related
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application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t) � b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t) � b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t) � kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x) � bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x) � bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:

@�

@t
(r, t) =

D1

r2

@

@r

✓
r2@�

@r
(r, t)

◆
+ �(�B � �(r, t)) � �� � g1(�, �),

0 < r < R(t). (1)

where �(r, t) is nutrient concentration of the tumor, D1 is the di�usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e�ects govern the evolution of the inhibitor in the tumor, the following
reaction-di�usion equation is also obtained

@�

@t
(r, t) =

D2

r2

@

@r

✓
r2@�

@r
(r, t)

◆
� g2(�, �), 0 < r < R(t) (2)

The dynamics of the moving interface is

1

3
s(t)2ṡ(t) =

Z s(t)

0
µ
�
� � ˜̃�

�
r2dr (3)

aba

1

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t) � b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t) � b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t) � kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x) � bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x) � bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)

Goal : Design cooling heat qf(t) to achieve s(t)→ sr.
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∂Ts

∂t
(x, t) = αs

∂2Ts

∂x2
(x, t)−b

∂Ts

∂x
(x, t)+hs (Tb − Ts(x, t)) , for 0 < x < s(t),

∂Tl

∂t
(x, t) = αl

∂2Tl

∂x2
(x, t)− b

∂Tl

∂x
(x, t) + hl (Tb − Tl(x, t)) , for s(t) < x < L,

BCs
∂Ts

∂x
(0, t) = −

qf(t)

ks
,

∂Tl

∂x
(L, t) =

q∗m
kl

Ts(s(t), t) = Tl(s(t), t) = Tm,

ODE (Interface dynamics)

ṡ(t) = β̄

(
ks
∂Ts

∂x
(s(t), t)− kl

∂Tl

∂x
(s(t), t)
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Model valid iff

Ts(x, t) ≤ Tm, for ∀x ∈ (0, s(t)), ∀t > 0

Tl(x, t) ≥ Tm, for ∀x ∈ (s(t), L), ∀t > 0

Steady-State (SS)



Tl,eq(x) = p1e

q1(x−sr) + p2e
q2(x−sr) + Tb,

Ts,eq(x) = p3e
q3(x−sr) + p4e

q4(x−sr) + Tb,

where pi & qi are parameters calculated by known physical values.
? If Tb = Tm & q∗m = 0, then Ts,eq(x) = Tl,eq(x) = Tm.

Lemma : If the barrel temperature satisfies

Tm − q ≤ Tb ≤ Tm + q̄

where q & q̄ are parameters calculated by known physical values, then Ts,eq(x) ≤
Tm & Tl,eq(x) ≥ Tm.
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Assumption : Liquid temperature is at SS, i.e., Tl(x, t) = Tl,eq(x)

Reference Error States

u(x, t) = ks(Ts,eq(x)− Ts(x, t)), X(t) = s(t)− sr

.

Reference Error System

∂u

∂t
(x, t) =αs

∂2u

∂x2
(x, t)− b

∂u

∂x
(x, t)− hsu(x, t),

∂u

∂x
(0, t) =− U(t), u(s(t), t) = ks(Ts,eq(s(t))− Tm),

Ẋ(t) =− β̄
∂u

∂x
(s(t), t) + β̄

(
ksT
′
s,eq(s(t))− klT

′
l,eq(s(t))

)
,

Linearize blue eq. around s(t) ≈ sr.
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Control law (derived by transformation & target system)

U(t) = −
b

2αs
u(0, t)−

β̄

αs

∫ s(t)
0

f(x)u(x, t)dx− f(s(t))X(t),

where f(x) = φ′(−x)− γφ(−x).

Theorem : Under Tb = Tm & q∗m = 0, the control law makes the closed-loop
system exponentially stable in the norm ||Ts(x, t)− Ts,eq(x)||2H1
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Apply the designed control to the original two-phase model in numerical simula-
tion
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that response, the validity condition (7) cannot be ensured.
From the simulations, we conclude that our control design

achieves a stable interface position, even with very fast
advection speeds 50 mm/s, with which a particle inserted in
the inlet will travel in two seconds through the extruder,
when assuming a 10 cm extruder.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed the thermodynamic model and
control design for the screw extrusion based 3D printing.
The steady-state analysis is provided, and the control design
to stabilize the interface position is derived. The simulation
results prove the effectiveness of the boundary feedback
control law for some given screw speeds. For further inves-
tigation, the observer-based output feedback design utilizing
the measurements of the temperature at the inlet and the
interface position will be considered as a future work.
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that response, the validity condition (7) cannot be ensured.
From the simulations, we conclude that our control design

achieves a stable interface position, even with very fast
advection speeds 50 mm/s, with which a particle inserted in
the inlet will travel in two seconds through the extruder,
when assuming a 10 cm extruder.
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control design for the screw extrusion based 3D printing.
The steady-state analysis is provided, and the control design
to stabilize the interface position is derived. The simulation
results prove the effectiveness of the boundary feedback
control law for some given screw speeds. For further inves-
tigation, the observer-based output feedback design utilizing
the measurements of the temperature at the inlet and the
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The boundary temperature remains a reasonable value



Future Work

• Observer-based output feedback control

• Relax assumption of Tl(x, t) = Tl,eq(x), and design for two-phase dynam-
ics

• Experimental verification of thermodynamic model


