ISS for Control of Stefan Problem w.r.t Heat Loss at Interface

Shumon Koga, Iasson Karafyllis, Miroslav Krstic

University of California, San Diego

ACC 2018

Motivation : Screw Extruder for Polymer 3D Printing

Model : Thermal phase change (melting/solidification)

Objective : Stabilize ratio of granules/melt polymer

Property : Temperature in both phases are dynamic

Simplified Model : Melting + Heat Loss

Simplified Model : Melting + Heat Loss

States : Temperature profile T(x, t), Interface position s(t)

Control : Melting heat $q_c(t) > 0$

Disturbance : Freezing heat $q_f(t) > 0$ (magnitude) from solid phase

Problem

Previous work (ACC16) : Designed $q_c(t) > 0$ (feedback w.r.t. T(x,t), s(t)) to achieve $s(t) \rightarrow s_r$ under $q_f(t) \equiv 0$.

Problem

Previous work (ACC16) : Designed $q_c(t) > 0$ (feedback w.r.t. T(x,t), s(t)) to achieve $s(t) \rightarrow s_r$ under $q_f(t) \equiv 0$.

Question : What if there exists $q_f(t) \ge 0$? (under same control design)

Problem

Previous work (ACC16) : Designed $q_c(t) > 0$ (feedback w.r.t. T(x,t), s(t)) to achieve $s(t) \rightarrow s_r$ under $q_f(t) \equiv 0$.

Question : What if there exists $q_f(t) \ge 0$? (under same control design)

 \rightarrow Prove Input-to-State Stability (ISS) w.r.t. $q_f(t)$

PDE $T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$

PDE $T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$ $T_x(0,t) = -q_c(t)/k$ $T(s(t),t) = T_m$

PDE
$$T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$$

 $T_x(0,t) = -q_c(t)/k$
 $T(s(t),t) = T_m$

ODE $\dot{s}(t) = -\beta T_x(s(t), t) - \gamma q_f(t)$

PDE
$$T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$$

 $T_x(0,t) = -q_c(t)/k$
 $T(s(t),t) = T_m$

ODE
$$\dot{s}(t) = -\beta T_x(s(t), t) - \gamma q_f(t)$$

State-dependent moving boundary \Rightarrow Nonlinear

Model valid iff

$$egin{aligned} T(x,t) > T_m, & ext{for} \quad orall x \in (0,s(t)), & orall t > 0 \ 0 < s(t) < L, & orall t > 0 \end{aligned}$$

Lemma If $q_c(t) > 0$ $\forall t > 0$, then $T(x,t) > T_m$, $\forall x \in (0,s(t)), \forall t > 0$

Model valid iff

$$T(x,t) > T_m$$
, for $\forall x \in (0,s(t))$, $\forall t > 0$
 $0 < s(t) < L$, $\forall t > 0$

Lemma If $q_c(t) > 0 \ \forall t > 0$, then $T(x,t) > T_m, \ \forall x \in (0,s(t)), \forall t > 0$

* $|q_c(t) > 0|$ and 0 < s(t) < L| are proved after $q_c(t)$ is designed

Without heat loss ($q_f(t) \equiv 0$), the following assumption **necessary**

Assumption : Setpoint s_r chosen to satisfy

,

$$s_0 + \frac{\beta}{\alpha} \int_0^{s_0} (T_0(x) - T_m) dx < s_r < L$$

We impose the same assumption because $q_f(t)$ is an *unknown* disturbance.

Assumption : The heat loss is bounded and its total energy is also bounded, i.e., $\exists \bar{q}_f, M > 0$ s.t.

$$0 \leq q_f(t) \leq ar{q}_f$$

$$\int_0^\infty q_f(t)dt \le M$$

Previous Result (ACC16) For $q_f(t) \equiv 0$, the control law

$$q_c(t) = -c \left(\frac{k}{\alpha} \int_0^{s(t)} (T(x,t) - T_m) dx + \frac{k}{\beta} (s(t) - s_r) \right)$$

where c > 0, makes the closed-loop system globally exponentially stable in the norm $\Psi(t) = ||T - T_m||_{\mathcal{H}_1}^2 + (s - s_r)^2$.

Previous Result (ACC16) For $q_f(t) \equiv 0$, the control law

$$q_c(t) = -c \left(\frac{k}{\alpha} \int_0^{s(t)} (T(x,t) - T_m) dx + \frac{k}{\beta} (s(t) - s_r) \right)$$

where c > 0, makes the closed-loop system globally exponentially stable in the norm $\Psi(t) = ||T - T_m||_{\mathcal{H}_1}^2 + (s - s_r)^2$.

Theorem (ACC18) For $q_f(t) \ge 0$, the <u>same control law</u> with gain c satisfying $c > \frac{\beta}{ks_r}\bar{q}_f$, makes the closed-loop system ISS w.r.t. $q_f(t)$ in the norm $\Psi(t) = ||T - T_m||_{\mathcal{L}_2}^2 + (s - s_r)^2$.

Previous Result (ACC16) For $q_f(t) \equiv 0$, the control law

$$q_c(t) = -c \left(\frac{k}{\alpha} \int_0^{s(t)} (T(x,t) - T_m) dx + \frac{k}{\beta} (s(t) - s_r) \right)$$

where c > 0, makes the closed-loop system globally exponentially stable in the norm $\Psi(t) = ||T - T_m||_{\mathcal{H}_1}^2 + (s - s_r)^2$.

Theorem (ACC18) For $q_f(t) \ge 0$, the <u>same control law</u> with gain c satisfying $c > \frac{\beta}{ks_r}\bar{q}_f$, makes the closed-loop system ISS w.r.t. $q_f(t)$ in the norm $\Psi(t) = ||T - T_m||_{\mathcal{L}_2}^2 + (s - s_r)^2$.

Note : Gain should be large to avoid complete frozen

• Reference errors

$$u(x,t) := T(x,t) - T_m, \quad X(t) := s(t) - s_r$$

• Reference errors

$$u(x,t) := T(x,t) - T_m, \quad X(t) := s(t) - s_r$$

• Backstepping transformation (from (u, X) to (w, X))

$$w(x,t) = u(x,t) - \frac{\beta}{\alpha} \int_{x}^{s(t)} \phi(x-y)u(y,t)dy - \frac{\phi(x-s(t))X(t)}{\phi(x)}$$

$$\phi(x) = \frac{c}{\beta}x - \varepsilon$$

• Reference errors

$$u(x,t) := T(x,t) - T_m, \quad X(t) := s(t) - s_r$$

• Backstepping transformation (from (u, X) to (w, X))

$$w(x,t) = u(x,t) - \frac{\beta}{\alpha} \int_{x}^{s(t)} \phi(x-y)u(y,t)dy - \phi(x-s(t))X(t)$$

$$\phi(x) = \frac{c}{\beta}x - \varepsilon$$

• Target system ($d(t) := \gamma q_f(t)$)

$$w_t(x,t) = \alpha w_{xx}(x,t) + \dot{s}(t)\phi'(x-s(t))X(t) + \phi(x-s(t))d(t),$$

$$w(s(t),t) = \varepsilon X(t) \quad w_x(0,t) = \frac{\beta}{\alpha}\phi(0)u(0)$$

$$\dot{X}(t) = -cX(t) - \beta w_x(s(t),t) - d(t)$$

$$\rightarrow \text{ Stable if } d(t) \equiv 0.$$

• Reference errors

$$u(x,t) := T(x,t) - T_m, \quad X(t) := s(t) - s_r$$

• Backstepping transformation (from (u, X) to (w, X))

$$w(x,t) = u(x,t) - \frac{\beta}{\alpha} \int_{x}^{s(t)} \phi(x-y)u(y,t)dy - \phi(x-s(t))X(t)$$

$$\phi(x) = \frac{c}{\beta}x - \varepsilon$$

• Target system $(d(t) := \gamma q_f(t))$

$$w_t(x,t) = \alpha w_{xx}(x,t) + \dot{s}(t)\phi'(x-s(t))X(t) + \phi(x-s(t))d(t),$$

$$w(s(t),t) = \varepsilon X(t) \quad w_x(0,t) = \frac{\beta}{\alpha}\phi(0)u(0)$$

$$\dot{X}(t) = -cX(t) - \beta w_x(s(t),t) - d(t)$$

 \rightarrow Stable if $d(t) \equiv 0$.

* The controller is derived by transformation & target system

Analysis

Lemma The closed-loop satisfies $|q_c(t) > 0|$ and 0 < s(t) < L

Lemma Target (w, X)-system is ISS w.r.t. d(t)

Proof is by ISS Lyapunov function. Define

$$V = \frac{1}{2\alpha} ||w||_{L_2}^2 + \frac{\varepsilon}{2\beta} X^2$$

and derive

$$V(t) \le M_1 V_0 e^{-bt} + M_2 \int_0^t e^{-b(t-\tau)} d(\tau)^2 d\tau$$

 \Rightarrow concludes ISS of (T, s) at (T_m, s_r) w.r.t q_f .

Numerical Simulation

Zinc Heat loss $q_f(t) = \bar{q}_f e^{-Kt}$ with *K* extremely small (half life 40 [hour])

 \Rightarrow illustrates ISS property with $0 < s(t) < s_r$.

Numerical Simulation

Zinc

* heat input maintains positive,

k liquid temperature is above melting temperature

F - F

100

Future Work

• Incorporate screw extruder's dynamics

$$T_t = \alpha T_{xx} - bT_x - h(T - T_b)$$

• Redesign by two-phase temperature dynamics (CDC 2017)