Arctic Sea Ice Temperature Profile Estimation via Backstepping Observer Design

Shumon Koga and Miroslav Krstic CCTA 2017

What Is Sea Ice?

 Sea ice is frozen ocean water.
 (while icebergs, glaciers, etc. originate in land)

• It covers 12% of the ocean.

Why Is Arctic Sea Ice Important?

• Affects global climate by reflection of solar energy.

Why Is Arctic Sea Ice Important?

• Affects global climate by reflecting the solar energy.

Ice-albedo positive feedback

Why Is Arctic Sea Ice Important?

• Recent decline of Arctic sea ice

Sea Ice in Global Climate Model

Sea Ice in Global Climate Model

• Time-evolution of thickness distribution by Thorndike, et al, 1975

Sea Ice in Global Climate Model

 $(T_s(x,t),T_i(x,t))\cdots$ Temp. of snow, sea ice

 $(T_s(x,t),T_i(x,t))\cdots$ Temp. of snow, sea ice

Simulation Result by MU71

Simulation Result by MU71

Comparison with Empirical Data

Empirical Data (Untersteiner 1969)

Comparison with Empirical Data

Empirical Data (Untersteiner 1969)

Problem Statement

- Problem
- 1) Recent data shows no annual cycle.
- 2) Complete profile of sea ice temperature is hard to measure.

Problem Statement

- Problem
- 1) Recent data shows no annual cycle.
- 2) Complete profile of sea ice temperature is hard to measure.

• Our Goal

Estimate the temperature profile via available measurements.

Problem Statement

- Problem
- 1) Recent data shows no annual cycle.
- 2) Complete profile of sea ice temperature is hard to measure.

• **Our Goal** <u>Estimate the temperature profile</u> via available measurements.

- Method
- 1) Design an estimator for simplified MU71 theoretically.
- 2) Apply the estimator to original MU71 numerically.

of flatate and engineering, its control of State Estimation broblem has not been investigated in application to the estimation of sea-ice en well known model since 200 vears rofile ghsmanatetrea, igt. psichnore practical to c hase transition which appearum various with a measurement of temperat Available Measurement ire and engine engine ated as a finger work. $\cdots \hat{s}(t), \text{ state} \\ \cdots \hat{s}(t), estima \overline{ti} H(t),$ m Thash (not) been inv sea-water $= 0.35m = T_i(0,t),$ $-s_r$ tion to0the (estimation of 2 sea-ice) molting 00 10 $\kappa_s I_x^{\gamma_3(t)} = \frac{\partial I_i}{\partial \kappa_i} (H(t) at ctica, it is more practical to construct$ $facte) = \partial_x \left(k_i (Tdesig) T_{xx}^{i} th) a Robert H. Martin and Mark E. Oxley. Movin$ and it is investigated asyacture warking warking open the and $H(t)^{192}$ the the thickness of them. Then, we have [2] W. B. Dunbar, N. Petit, P. Roughon, and Ph. s (and q T > for a anontarian surfating coplem LES(A) M: G mak conductive last by Master ton ar 0.2 [3] Bryan Petres, Jeseph Bentsman, and Brian C $\rho_s c_s T_{q}^s (x_t^{feedback} T_{xx}^{control}) algorithms for the (stefan)$ betts H. Martin, and Wark Es Oxley. Moving bounda Turing The Darabui, P. Durour, H. Hammouri, and A

of flatate and engineering, its control of State Estimation broblem has not been investigated in application to the estimation of sea-ice en well known model since 200 vears rofile ghsmanateer, of as more practical to c hase transition which appearum various design with a measurement of temperat Available Measurement work. irer and ensine ensight ated as a fi -s(t), state $\hat{s}(t), estimation(t),$ m Thash (A) ot been inv sea-water $0 = T_i(0, t),$ tion to0the (estimation of 2sea-ice) melting)0 **45**0 $\kappa_s Y_{x}(t) = \frac{\mathcal{Y}_{x}(t)}{\mathbf{H}_{x}(t)} = \frac{\mathcal{Y}_{x}(t)}{\mathbf{H}_{x}(t)} + \frac{\mathcal{Y}_{x}(t)}{\mathbf{H}$ (face) = $\partial_x \left(k_i (T_i^j e s_i g) T_i^j + t_h \right)$ a measure of the period of the p and it is unvestigated as a future warking of the open th and $H(t)^{192}$ the the thickness of them. Then, we has S(x) = 0[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. $S(an) d q^{*}L > for a nontrivial stephingrophem. Lest <math>M: C$ Salinity free : marconduc ti the top Warta ion ar 0.2 [3] Bryan Petres, Jeseph Bentsman, and Brian C $\rho_s c_s T_{q}^s (x_t^{feedback} T_{xx}^{control}) algorithms for the (stefan)$ betts H. Martin and Mark Es Qx Ley. Moving bounda fusion systems with absorption Nonlinear Analys

• Observer Design

$$\begin{split} \hat{T}_{i}(0,t) &= \mathcal{Y}_{2}(t), \\ \frac{\partial \hat{T}_{i}}{\partial t}(x,t) &= D_{i} \frac{\partial^{2} \hat{T}_{i}}{\partial x^{2}}(x,t) + \bar{I}_{0} \kappa_{i} e^{-\kappa_{i} x} \\ &+ p(x,t) \left(\mathcal{Y}_{3}(t) - \frac{\partial \hat{T}_{i}}{\partial x}(\mathcal{Y}_{1}(t),t) \right), \quad 0 < x < \mathcal{Y}_{1}(t) \end{split}$$

 $\hat{T}_i(\mathcal{Y}_1(t), t) = T_{m2}.$

,

• Observer Design

$$\begin{split} \hat{T}_{i}(0,t) &= \mathcal{Y}_{2}(t), \\ \frac{\partial \hat{T}_{i}}{\partial t}(x,t) &= D_{i} \frac{\partial^{2} \hat{T}_{i}}{\partial x^{2}}(x,t) + \bar{I}_{0} \kappa_{i} e^{-\kappa_{i} x} \\ &+ p(x,t) \left(\mathcal{Y}_{3}(t) - \frac{\partial \hat{T}_{i}}{\partial x}(\mathcal{Y}_{1}(t),t) \right), \quad 0 < x < \mathcal{Y}_{1}(t) \end{split}$$

 $\hat{T}_i(\mathcal{Y}_1(t), t) = T_{m2}.$

• Error System

$$\begin{split} \tilde{T}_i(0,t) =& 0, \\ \frac{\partial \tilde{T}_i}{\partial t}(x,t) =& D_i \frac{\partial^2 \tilde{T}_i}{\partial x^2}(x,t) - p(x,t) \frac{\partial \tilde{T}_i}{\partial x}(H(t),t) \\ \tilde{T}_i(H(t),t) =& 0. \end{split}$$

• Observer Design

$$\begin{split} \hat{T}_{i}(0,t) &= \mathcal{Y}_{2}(t), \\ \frac{\partial \hat{T}_{i}}{\partial t}(x,t) &= D_{i} \frac{\partial^{2} \hat{T}_{i}}{\partial x^{2}}(x,t) + \bar{I}_{0} \kappa_{i} e^{-\kappa_{i} x} \\ &+ p(x,t) \left(\mathcal{Y}_{3}(t) - \frac{\partial \hat{T}_{i}}{\partial x}(\mathcal{Y}_{1}(t),t) \right), \quad 0 < x < \mathcal{Y}_{1}(t) \end{split}$$

 $\hat{T}_i(\mathcal{Y}_1(t), t) = T_{m2}.$

• Error System

$$\begin{split} \tilde{T}_i(0,t) =& 0, \\ \frac{\partial \tilde{T}_i}{\partial t}(x,t) =& D_i \frac{\partial^2 \tilde{T}_i}{\partial x^2}(x,t) - p(x,t) \frac{\partial \tilde{T}_i}{\partial x}(H(t),t), \\ \tilde{T}_i(H(t),t) =& 0. \end{split}$$
Task : Derive $p(x,t)$ to

Task : Derive p(x, t) to achieve $\tilde{T} \to 0$ quickly.

• Backstepping Transformation

$$w(x,t) = \tilde{T}_i(x,t) - \int_x^{H(t)} \nu(x,y) \tilde{T}_i(y,t) dy,$$
$$\tilde{T}_i(x,t) = w(x,t) - \int_x^{H(t)} n(x,y) w(y,t) dy,$$

• Backstepping Transformation

$$w(x,t) = \tilde{T}_i(x,t) - \int_x^{H(t)} \nu(x,y) \tilde{T}_i(y,t) dy,$$
$$\tilde{T}_i(x,t) = w(x,t) - \int_x^{H(t)} n(x,y) w(y,t) dy,$$

• Target System

$$\begin{split} w(0,t) =& 0, \\ \frac{\partial w}{\partial t}(x,t) =& D_i \frac{\partial^2 w}{\partial x^2}(x,t) - \lambda w(x,t), \\ w(H(t),t) =& 0. \end{split}$$

• Backstepping Transformation

$$\begin{split} w(x,t) = &\tilde{T}_i(x,t) - \int_x^{H(t)} \nu(x,y) \tilde{T}_i(y,t) dy, \\ \tilde{T}_i(x,t) = & w(x,t) - \int_x^{H(t)} n(x,y) w(y,t) dy, \end{split}$$

• Target System

$$\begin{split} & w(0,t) = 0, \\ & \frac{\partial w}{\partial t}(x,t) = D_i \frac{\partial^2 w}{\partial x^2}(x,t) - \lambda w(x,t), \\ & w(H(t),t) = 0. \end{split}$$

• Gain Derivation

$$p(x,t) = -\lambda x \frac{I_1\left(\sqrt{\frac{\lambda}{D_i}(\boldsymbol{H}(t)^2 - x^2)}\right)}{\sqrt{\frac{\lambda}{D_i}(\boldsymbol{H}(t)^2 - x^2)}},$$

Online Calculation

Simulation Test of MU71

Simulation Test of MU71

Simulation of Temperature Estimation

Gain Tuning

Gain Tuning

 $\lambda = 1.0 \times 10^{-5}$

Gain tuning shows the tradeoff between <u>convergence</u> <u>speed</u> and <u>overshoot</u>

Future Work

• Observer design with less measurements

• Comparison with a well-known estimator (e.g. Kalman filter)

• Implementation using empirical data.

Acknowledgment

Prof. I. Eisenman

Dr. I. Fenty

Jet Propulsion Laboratory California Institute of Technology