Delay Compensated Control of the Stefan Problem

Shumon Koga, Miroslav Krstic

University of California, San Diego

CDC 2017

Motivation

3D-Printing

Lithium Ion Batteries

Stefan Problem (Phase Change Model)

Cryosurgery

Sea Ice

Physical Model : Melting

Physical Model : Melting + Actuator Delay

Objective: Design heat control $q_c(t)$ to achieve

 $s(t) o s_r$, $T(x,t) o T_m$, as $t o \infty$

PDE $T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$

PDE $T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$ $-kT_x(0,t) = q_c(t-D)$ $T(s(t),t) = T_m$

PDE
$$T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$$

 $-kT_x(0,t) = q_c(t-D)$
 $T(s(t),t) = T_m$

ODE $\dot{s}(t) = -\beta T_x(s(t), t)$

PDE
$$T_t(x,t) = \alpha T_{xx}(x,t), \quad 0 < x < s(t) < L$$

 $-kT_x(0,t) = q_c(t-D)$
 $T(s(t),t) = T_m$

ODE
$$\dot{s}(t) = -\beta T_x(s(t), t)$$

State-dependent moving boundary \rightarrow Nonlinear

Assumption : Initial interface position $s_0 > 0$, and initial temperature $T_0(x)$ is Lipschitz (H := Lip. const.)

Assumption : The past input maintains non-negative, i.e.

$$q_{\mathsf{C}}(t) \geq 0, \quad -D < \forall t < 0.$$

Model valid iff

$T(x,t) > T_m$, for $\forall x \in (0,s(t)), \forall t > 0$

How to guarantee this?

Model valid iff

$T(x,t) > T_m$, for $\forall x \in (0,s(t)), \forall t > 0$

How to guarantee this?

Lemma If $q_c(t) > 0$ $\forall t > 0$, then $\dot{s}(t) > 0$ $\forall t > 0$ and $T(x,t) > T_m$, $\forall x \in (0,s(t)), \forall t > 0$

$$\frac{d}{dt} \left(\underbrace{\frac{k}{\alpha} \int_{0}^{s(t)} (T(x,t) - T_m) dx}_{\text{Internal Energy}} + \underbrace{\frac{k}{\beta} s(t)}_{\text{Stored Energy}} + \underbrace{\int_{t-D}^{t} q_{\mathsf{C}}(\theta) d\theta}_{\text{Stored Energy}} \right) = \underbrace{q_c(t)}_{\text{Work}} > 0$$

• For model to be valid (single melting interface), heat must be added.

• For model to be valid (single melting interface), heat must be added.

• When heat added, total energy (internal + stored) grows.

• For model to be valid (single melting interface), heat must be added.

• When heat added, total energy (internal + stored) grows.

• Since total energy grows, energy corresponding to setpoint must be greater than initial energy

The following assumption **necessary** $\left(\text{because } \int_{0}^{s_r} (T_r(x) - T_m) dx = 0 \right)$

Assumption : Setpoint s_r chosen to satisfy

$$s_r > s_0 + \beta \left(\frac{1}{\alpha} \int_0^{s_0} (T_0(x) - T_m) dx + \int_{-D}^0 \frac{q_c(t)}{k} dt \right)$$

Theorem The control law

$$q_{\mathsf{C}}(t) = -c \left(\int_{t-D}^{t} q_{\mathsf{C}}(\theta) d\theta + \frac{k}{\alpha} \int_{0}^{s(t)} (T(x,t) - T_{\mathsf{m}}) dx + \frac{k}{\beta} (s(t) - s_{\mathsf{r}}) \right),$$

where c > 0, makes the closed-loop system globally exponentially stable in the norm

$$||T - T_m||^2_{\mathcal{H}_1} + (s - s_r)^2.$$

Theorem The control law

$$q_{\mathsf{C}}(t) = -c \left(\int_{t-D}^{t} q_{\mathsf{C}}(\theta) d\theta + \frac{k}{\alpha} \int_{0}^{s(t)} (T(x,t) - T_{\mathsf{m}}) dx + \frac{k}{\beta} (s(t) - s_{\mathsf{r}}) \right),$$

where c > 0, makes the closed-loop system globally exponentially stable in the norm

$$||T - T_m||_{\mathcal{H}_1}^2 + (s - s_r)^2.$$

Note : Control law is nonlinear because of s(t) in integration limit.

Reference errors

$$u(x,t) := T(x,t) - T_m, \quad X(t) := s(t) - s_r$$

Change of variable

$$v(x,t) := q_{\mathsf{C}}(t-x-D)/k$$

Reference errors

$$u(x,t) := T(x,t) - T_m, \quad X(t) := s(t) - s_r$$

Change of variable

$$v(x,t) := q_{\mathsf{C}}(t-x-D)/k$$

(v, u, X)-system

$$v_{t}(x,t) = -v_{x}(x,t), \quad -D < x < 0$$

$$v(-D,t) = q_{c}(t),$$

$$u_{x}(0,t) = -v(0,t),$$

$$u_{t}(x,t) = \alpha u_{xx}(x,t), \quad 0 < x < s(t)$$

$$u(s(t),t) = 0,$$

$$\dot{X}(t) = -\beta u_{x}(s(t),t).$$

$$PDE$$

$$u_{t} = \alpha u_{xx},$$

$$u(s(t),t) = 0,$$

$$\dot{X}(t) = -\beta u_{x}(s(t),t).$$

Backstepping transformations

$$w(x,t) = u(x,t) - \frac{c}{\alpha} \int_x^{s(t)} (x-y)u(y,t)dy - \frac{c}{\beta} \frac{(x-s(t))X(t)}{(x-s(t))X(t)}$$
$$z(x,t) = v(x,t) + c \int_x^0 v(y,t)dy + \frac{c}{\alpha} \int_0^{s(t)} u(y,t)dy + \frac{c}{\beta} X(t)$$

 \rightarrow both are *nonlinear* transformations

Backstepping transformations

$$w(x,t) = u(x,t) - \frac{c}{\alpha} \int_{x}^{s(t)} (x-y)u(y,t)dy - \frac{c}{\beta}(x-s(t))X(t)$$
$$z(x,t) = v(x,t) + c \int_{x}^{0} v(y,t)dy + \frac{c}{\alpha} \int_{0}^{s(t)} u(y,t)dy + \frac{c}{\beta}X(t)$$

 \rightarrow both are *nonlinear* transformations

Target system

$$z_t(x,t) = -z_x(x,t), \quad -D < x < 0$$

$$z(-D,t) = 0,$$

$$w_x(0,t) = -z(0,t),$$

$$w_t(x,t) = \alpha w_{xx}(x,t) + \frac{c}{\beta} \dot{s}(t) X(t), \quad 0 < x < s(t)$$

$$w(s(t),t) = 0,$$

$$\dot{X}(t) = -cX(t) - \beta w_x(s(t),t).$$

Model validity

Proposition Controller maintains $q_c(t) > 0$ and $s_0 < s(t) < s_r$.

Model validity

Proposition Controller maintains $q_c(t) > 0$ and $s_0 < s(t) < s_r$.

Proof:

$$q_c = -c$$
 (total energy – setpoint energy)

$$\dot{q}_c(t) = -cq_c(t)$$
 $\therefore q_c(t) = q_c(0)e^{-ct} > 0$

Model validity

Proposition Controller maintains $q_c(t) > 0$ and $s_0 < s(t) < s_r$.

Proof:

$$q_c = -c$$
 (total energy – setpoint energy)

$$\dot{q}_c(t) = -cq_c(t)$$
 $\therefore q_c(t) = q_c(0)e^{-ct} > 0$

Lyapunov analysis with $\dot{s}(t) > 0$ and $s_0 < s(t) < s_r$ yields the norm estimate

$$\Psi(t) \le M \Psi(0) e^{-bt},$$

for some positive constants M > 0 and b > 0, where $\Psi(t) = ||v||^2_{\mathcal{H}_1(-D,0)} + ||u||^2_{\mathcal{H}_1(0,s(t))} + X(t)^2$.

Numerical Simulation

Zinc

No overshoot

Numerical Simulation

Compare with uncompensated control

$$q_{\mathsf{C}}(t) = -c\left(\frac{k}{\alpha}\int_{0}^{s(t)} (T(x,t) - T_{\mathsf{m}})dx + \frac{k}{\beta}(s(t) - s_{\mathsf{r}})\right),$$

Uncompensated control violates the model validity

Numerical Simulation

Heat input

Uncompensated control violates the model validity

Future Work

• Observer design under sensor delay

• Adaptive control under unknown delay