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Fig. 1. The moving interface.
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Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ
(t
)

 

 

s(t), state
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t)

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t) T (x, t)

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Control of the Tumor Growth Described by Free
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e↵ects govern the evolution of the inhibitor in the tumor, the following
reaction-di↵usion equation is also obtained
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s(t)2ṡ(t) =

Z s(t)

0
µ
�
� � ˜̃�

�
r2dr (3)

ab > 0ab < 0a sr

1



0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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exponential stability of sum of the moving interface,
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backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e↵ects govern the evolution of the inhibitor in the tumor, the following
reaction-di↵usion equation is also obtained
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Objective: Design heat control qc(t) to achieve

s(t)→ sr, T (x, t)→ Tm, as t→∞
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ŝ
(t
)

 

 

s(t), state
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ŝ
(t
)

 

 

s(t), state
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application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ
(t
)

 

 

s(t), state
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Assumption : The past input maintains non-negative, i.e.

qc(t) ≥ 0, −D < ∀t < 0.



Model valid iff

T (x, t) > Tm, for ∀x ∈ (0, s(t)), ∀t > 0

How to guarantee this?
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• For model to be valid (single melting interface), heat must be added.

• When heat added, internal energy grows.

• Since internal energy grows, energy corresponding to setpoint must be
greater than initial energy.
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where c > 0, makes the closed-loop system globally exponentially stable in the
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||T − Tm||2H1
+ (s− sr)2.
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u(s(t), t) =0,

Ẋ(t) =− βux(s(t), t).
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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achieved if and only if the following limit on the total energy
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Taking integration of (11) from t = 0 to t = 1 with the help
of qc(t) > 0 for t > 0 and (12), the following assumption
on the setpoint is provided.
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Next, we state our main result.
Theorem 1: Under Assumptions 1-3, the closed-loop sys-

tem consisting of the plant (1)–(5) and the control law
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where c > 0 is an arbitral control gain, maintains the model
validity (6) and is exponentially stable in the sense of the
norm

||T (x, t) � Tm||2H1(0,s(t)) + (s(t) � sr)
2
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Remark 3: The rigorous proof of the well-posedness of

the closed-loop solution has not been established yet, and
we leave it others to prove.

The proof of Theorem 1 is established through Section
IV–VI.

IV. BACKSTEPPING TRANSFORMATION

A. Change of variables
Introduce reference error variables defined by

u(x, t) :=k(T (x, t) � Tm), X(t) := k(s(t) � sr). (16)

Next, we introduce a variable

v(x, t) = qc(t � x � D). (17)

Then, (17) gives the boundary values of current input
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vt = � vx, �D < x < 0 (18)
v(�D, t) =qc(t), (19)
ux(0, t) = � v(0, t), (20)

ut =↵uxx, 0 < x < s(t) (21)
u(s(t), t) =0, (22)
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The transformation (24) is the same nonlinear transformation
as the one proposed in [3] for delay-free Stefan problem. The
formulation of (25) is motivated by a design in fixed domain
introduced in [7]. Taking derivatives of (24) and (25) in x
and t along with the solution of the system (18)–(23), the
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Remark 3: The rigorous proof of the well-posedness of

the closed-loop solution has not been established yet, and
we leave it others to prove.
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IV–VI.
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V. PHYSICAL CONSTRAINTS

Noting that (7) should hold since qc(t) > 0 is required by
Remark 2 and Lemma 2 to satisfy (6), the overshoot beyond
the setpoint sr is prohibited to achieve the control objective
s(t) ! sr, i.e. s(t) < sr is required to be satisfied for 8t > 0.
In this section, we prove that the closed-loop system with the
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Explanation of Design

Backstepping transformations

w(x, t) =u(x, t)−
c

α

∫ s(t)

x
(x− y)u(y, t)dy −

c

β
(x− s(t))X(t)

z(x, t) =v(x, t) + c
∫ 0

x
v(y, t)dy +

c

α

∫ s(t)

0
u(y, t)dy +

c

β
X(t)

→ both are nonlinear transformations Target system

zt(x, t) =− zx(x, t), −D < x < 0

z(−D, t) =0,

wx(0, t) =− z(0, t),

wt(x, t) =αwxx(x, t) +
c

β
ṡ(t)X(t), 0 < x < s(t)

w(s(t), t) =0,

Ẋ(t) =− cX(t)− βwx(s(t), t).
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Model validity

Proposition Controller maintains qc(t) > 0 and s0 < s(t) < sr.

Proof:

qc = −ck (internal energy− setpoint internal energy)

q̇c(t) = −cqc(t) ∴ qc(t) = qc(0)e−ct > 0

qc(t) > 0 is a consequence (bonus, but not goal) of backstepping design!



Model validity

Proposition Controller maintains qc(t) > 0 and s0 < s(t) < sr.

Proof:

qc = −c (total energy− setpoint energy)

q̇c(t) = −cqc(t) ∴ qc(t) = qc(0)e−ct > 0

Lyapunov analysis with ṡ(t) > 0 and s0 < s(t) < sr yields the norm estimate

Ψ(t) ≤MΨ(0)e−bt,

for some positive constants M > 0 and b > 0,
where Ψ(t) = ||v||2H1(−D,0) + ||u||2H1(0,s(t)) +X(t)2.
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Numerical Simulation

Compare with uncompensated control
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Numerical Simulation
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Future Work

• Observer design under sensor delay

• Adaptive control under unknown delay


