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Recent study reports that Arctlc will see |ce-free summer by 2050, deduced from majority
of simulation models [D. Norz, et al, 2020].




Growth of Additive Manufacturing, a.k.a. 3D-printing
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1-D Schematic of Thermal Phase Change
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Stefan Problem
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T(s(t),t) =Tm

L State-dependent moving boundary — geometric nonlinearity
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Control Problem

Objective: Design heat control ¢c(t) > O to achieve
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where sy > s := sg + gfgo(To(ac) — Tm)dzx.
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Control Designh by Backstepping

1. Define (u, X) := (T — Tm, s — sr), and obtain (u, X)-system
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Control Designh by Backstepping

1. Define (u, X) := (T — Tm, s — sr), and obtain (u, X)-system

2. Develop a state transformation (u,X) = (w,X) (and its inverse) s.i.
(w, X )-system has a stabilizing term

s(t)
w=u-— / ke, y)uly, O)dy — bz — s(t) X
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Control Designh by Backstepping
1. Define (u, X) := (T'— Tm, s — sr), and obtain (u, X )-system

2. Develop a state transformation (u,X) = (w,X) (and its inverse) s.t.
(w, X )-system has stabilizing terms

N

3. Design gc(t) to cancel redundant - - - terms 11/32



Equivalence with Energy-Shaping

Potential energy (as reference error)

s(t)
B(t) = g /O (T(z,t) — Tyn)dzx + %(s(t) —5)
satisfies
dgit) — QC(t)

The designed BKS controller happens to be
q.(t) = —cE(t)

which is equivalent to an energy-shaping (ES) control.

— (1) = qC(O)e_CtZ 0 constraint is satisfied
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Theoretical Result [1]

Theorem: Under the control law

kst k
qc(t) = —c (afo (T'(z,t) — Tm)dx + B(S(t) - 8r)>

where ¢ > 0, the closed-loop system satisfies
e constraints gqc(t) > 0, T'(z,t) > Tm,
e global exponential stability in the norm [|T° — Tim||5,, + (s — s7)%, i.e.,

o5 1500

[1] S. Koga, M. Diagne, M. Krstic, ~"Control and State Estimation of One-Phase Stefan Problem via Backstepping Design", IEEE Transactions on Automatic Control,
2019 13/32



Experiment using Paraffine [2]
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[2] S. Koga, ata, R. Chen, , and A.P. Pisano “Eneré
Technology, 2 '
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Lithium-ion batteries [3]

Voltage: V

1
|
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State-of-Charge (SoC) Estimation
Given: Input current I and output voltage V
Estimate: Total amount of lithium ion in each electrode.

[ Bk Ly

[3] S. Koga, L. Camacho-Solorio, and M. Krstic “'State Estimation of Lithium-lon Batteries with Phase Transition Materials via Boundary Observers," ASME Journal
of Dynamic Systems, Measurement, and Control, under review 16/32




Charge-Discharge Cycle of LFP

LiFePO4 (LFP) is attractive due to thermal stability and cost effectiveness

FePO, + Lit + e~ = LiFePOy4
a-phase B-phase
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Stefan Model of LFP (by Srinivasan and Newman 2004)

c(r,t) --- concentration of lithium-ion in positive electrode

Measurement: Output voltage V, which gives
surface concentration c(Rp, t).
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Observer Design

Challenge: Estimation without knowing moving boundary rp(t¢)

Idea:
(Step1) Design observer ¢ assuming rp(t¢) is known,

) =y [PEE 8] +Prp(0), ) [e(Rp, ) — &R, 1),

A(?“p(t) t) =cg,
—(Rp, t) = —j()+Q(rp(t)) [c(Rp,t) — c(Rp, )],

The gains (P, Q) are derived via backstepping (BKS) method.
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Observer Design

Challenge: Estimation without knowing moving boundary rp(t)

Idea:

(Step1) Design observer ¢ assuming rp(t) is known,

(Step2) Construct the entire observer (¢, 7p) via replacing rp(t) in Step 1 by
rp(t), and add estimator of 7p(t)

oc D 0
D=0 |r
5(?jp(t)at) =cg,
DZE(Rp, 1) =—5(1) + Qo)) [e(Rp, 1) — e(Rp, )]
To®) — B (rp(t), 1)+ [e(Rp. 1) — 2B, 1),

Stability proof of estimation error system is still an open problem

»0C

E(T’ t)] + P(7p(t),r) [c(Rp,t) — ¢(Rp,t)],
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Simulation of BKS Estimation for Lithium-ion Concentration
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= Our BKS estimator enables to capture lithium-ion concentration in short time

SoC is calculated from the concentration by

4 fé%p r2c(r, t)dr

SoC(t) = |1
oc() Qmax

x 100[%)]
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Comparison of BKS with EKF in SoC Estimation
70 ‘ ‘
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Noise-free With Noise

In this sample simulation, it shows (not best parameters’ choice for each method)

e Our BKS is superior in convergence speed

e EKF is superior in noise attenuation 22/32



Neuron Growth Model of Stefan-type (C. Demir, et al, [4])

c(x,t) --- Concentration of Tubulin in axon

Dentrites Soma oc O?%c oc
(’%( ) D@?( t)—a%(az,t)—gc(a:,t),
oc
Aj(en Py (O t) — qs(t),

c(l(t),t) =cc(1),

Nucleus %NM _zc‘f;C(t) :(a—gzc)cc(t)—Q%(l(t),t)

* Designed control input for linearized system by BKS

. Showed Iocal stablllty of reference error, ensuring [(t) — L.
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— E (t) is one element of ODE state (this is not the case of Stefan problem)

[4] C. Demir, S. Koga, and M. Krstic "Neuron Growth Control by PDE Backstepping: Axon Length Regulation by Tubulin Flux Actuation in Soma”, 60th IEEE
Conference on Decision and Control (CDC), submitted 23/32
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1. Trajectory Tracking Control of Stefan Problem

(T(x, t), S(t)) .-+ State variables
(Tr(x, t), Sr(t)) .-« Reference trajectories (a known function in time)

0 s(t) sp(1)

Challenge: How to deal with domains’ discrepancy?
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1. Trajectory Tracking Control of Stefan Problem

 If we simplysetu(x,t) =T(x,t) — T,.(x,t), then the boundary condition becomes
u(s(t),t) =Ty — T(s(t),t)
which is a nonlinear function in s(t).

* We can linearize at s(t) = s,(t), which leads to
us(x,t) =auy(x,1), 0<x <s()

—ku (0, 1) =g (t) — g (@),
u(s(t), 1) =C(1)X (1),

X (1) =AM X (1) — Bux(s(1), 1),
* Challenges still remain in:
o derivation of time-varying BKS and gain kernels,
o ensuring the positivity of control input,
o (if possible) improving local stability result utilizing linearization.
 The change of coordinate approach by S. Ecklebe et al [5] might be a good way to go.

[5] Ecklebe, S., Woittennek, F., Frank-Rotsch, C., Dropka, N., & Winkler, J. (2021). “Toward Model-Based Control of the Vertical Gradient Freeze Crystal Growth
Process”. IEEE Transactions on Control Systems Technology. 26/32



2. Tumor Growth Model of Stefan-type [6]

Inhibitor

fumor

o(r,t) -+ nutrient concentration of tumor
f (7, t) --- inhibitor concentration

a_a(r, £) _Di1 9 (rza—g(r, t)) — doo(r, t) — y18(r, 1),
ot r2 or or

0<r < R(@®)
2—ﬁ(r, ) —%% (rzg—f(r, t)) — B, 0<r <R,
8—0(0, t) =0,
ar

o(R(t),t) =0,

B(R, 1) =U(t),

38 B
o (0.1) =0,

R(®)

SROPRO = [ o i) = 5) = vp0 )

0

[6] Byrne, H. M., & Chaplain, M. A. J., “Growth of nonnecrotic tumors in the presence and absence of inhibitors”, Mathematical biosciences, 1995.
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2. Tumor Growth Model of Stefan-type

Deriving the reference-error system and taking linearization leads to

dt
av
a—r((), t) =0
X — ODE
v(R(1), 1) =CX (1), Control U(t) /
_ ——— —
w(R, 1) =U (1), u — PDE \ ‘ l
0 b o, v — PDE
ar
, R(t) , The problem is open even for
X(1) =AX(1) /O (wo(r, 1) = valr, D)redr. analogous fixed-domain PDE system.
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3. Control Synthesis of BKS-ES for Stabilization with Constraint

Existing results and approaches for Stefan systems

1-Phase Stefan BKS = ES Guaranteed Guaranteed
1-Phase Stefan with advection BKS Happened to be Guaranteed
shown
2-Phase Stefan ES Guaranteed Happened to be shown

Question: How can we design control guaranteeing both stability and constraint?
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3. Control Synthesis of BKS-ES for Stabilization with Constraint

Idea: BKS-ES QP formulation, analogously to CLF-CBF QP formulation in safety control of ODEs

Safety control of nonlinear ODEs by Ames, et al [7]

t = f(z) +g(z)u,
1

u(z) = argmin  —u’ H(x)u + pd” (CLF-CBF QP)
(u75)€Rm+1 2

s.t. LiV(x)+ L,V(z)u < —y(V(x))+6

Lih(z) + Lgh(z)u = —a(h(z))

Combining with port-Hamiltonian formulation proposed by Vincent, et al [8] is
an interesting direction

[7] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, & P. Tabuada, “Control barrier functions: Theory and applications”. ECC 2019.
[8] Vincent, B., Couenne, F., Lefevre, L., & Maschke, B. (2020). “Port Hamiltonian systems with moving interface: the two-phase Stefan problem”, MTNS 2020. 30/32



Summary

* Control for Stefan problem, a parabolic PDE with a moving boundary modeling the
thermal phase change, has been developed via backstepping/energy-shaping.

» Stefan-type systems have been utilized for various application models, including
chemical reaction and biological growth process.

* Numerous open problems exist from both control-theoretic and application-driven
perspectives.

* Fundamental challenge lies in, how to deal with geometric nonlinearity of moving
boundary.
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