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Recent study reports that Arctic will see “ice-free" summer by 2050, deduced from majority 
of simulation models [D. Norz, et al, 2020]. 4/32



Growth of Additive Manufacturing, a.k.a. 3D-printing
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1-D Schematic of Thermal Phase Change
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Physics-Based Stefan Model

Assumptions: (i) One-dimensional, (ii) No convection,
aaaaaaaaaaa (iii) No cooling from solid phase

solid
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Fig. 1. The moving interface.
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Fig. 2. H
1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Stefan Problem

State-dependent moving boundary → geometric nonlinearity
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Control Problem
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<latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit><latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit><latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit><latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit>

Design qc (t) > 0

<latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit>

Under qc(t
) � 0

<latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit>

Tm
<latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit><latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit><latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit><latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit> Tm

<latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit><latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit><latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit><latexit sha1_base64="CbCwcBWA7e+mz2QlwHv8ZKDitpk=">AAAB7HicbZDNSgMxFIVv6l+tf1WXboJFcFVmRNBl0Y3LCp220A4lk2ba0CQzJBmhDH0GNy4UcesDufNtTNtZaOuBwMe595J7T5QKbqznfaPSxubW9k55t7K3f3B4VD0+aZsk05QFNBGJ7kbEMMEVCyy3gnVTzYiMBOtEk/t5vfPEtOGJatlpykJJRorHnBLrrKA1yOVsUK15dW8hvA5+ATUo1BxUv/rDhGaSKUsFMabne6kNc6Itp4LNKv3MsJTQCRmxnkNFJDNhvlh2hi+cM8Rxot1TFi/c3xM5kcZMZeQ6JbFjs1qbm//VepmNb8OcqzSzTNHlR3EmsE3w/HI85JpRK6YOCNXc7YrpmGhCrcun4kLwV09eh/ZV3Xf8eF1r3BVxlOEMzuESfLiBBjxAEwKgwOEZXuENKfSC3tHHsrWEiplT+CP0+QP0VI7E</latexit>

s(t) � sr & T̂ (x, t) � T (x, t) T̂0(x)
t = 0 t > 0.
�
s0, T0(x)

qc(t)
<latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit><latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit><latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit><latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit>

Objective: Design heat control qc(t) > 0 to achieve

s(t) ! sr as t ! 1

where sr > s1 := s0 + �

↵

R s0
0 (T0(x) � Tm)dx.

sr

<latexit sha1_base64="8pnIEjvzdvqT20hrJms/CGP204g=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSyCq5JIQZdFNy4r2Ac0IUwmk3bozCTMTIQSs/BX3LhQxK2/4c6/cZpmoa0HLhzOuXfu3BOmjCrtON/Wyura+sZmbau+vbO7t28fHPZUkklMujhhiRyESBFGBelqqhkZpJIgHjLSDyc3M7//QKSiibjX05T4HI0EjSlG2kiBfZx75SO5JFGhgtyTHMqiCOyG03RKwGXiVqQBKnQC+8uLEpxxIjRmSKmh66Taz5HUFDNS1L1MkRThCRqRoaECcaL8vFxdwDOjRDBOpCmhYan+nsgRV2rKQ9PJkR6rRW8m/ucNMx1f+TkVaaaJwPNFccagTuAsDBhRSbBmU0MQltT8FeIxkghrE1ndhOAunrxMehdNt9Vs3bUa7esqjho4AafgHLjgErTBLeiALsDgETyDV/BmPVkv1rv1MW9dsaqZI/AH1ucPFuSWyw==</latexit>

s�
<latexit sha1_base64="lv1r5rk4H8G7tfyfKuBZTbHnuEA=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv3ANpTNdtMu3WzC7kQIof/CiwdFvPpvvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorUczyPtChZhNB9WaW3fnIqvgFVCDQs1B9as/jFkacYVMUmN6npugn1ONgkk+rfRTwxPKJnTEexYVjbjx8/nGU3JmnSEJY22fQjJ3f0/kNDImiwLbGVEcm+XazPyv1ksxvPZzoZIUuWKLj8JUEozJ7HwyFJozlJkFyrSwuxI2ppoytCFVbAje8smr0L6oe5bvL2uNmyKOMpzAKZyDB1fQgDtoQgsYKHiGV3hzjPPivDsfi9aSU8wcwx85nz8ZP5Eu</latexit><latexit sha1_base64="lv1r5rk4H8G7tfyfKuBZTbHnuEA=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv3ANpTNdtMu3WzC7kQIof/CiwdFvPpvvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorUczyPtChZhNB9WaW3fnIqvgFVCDQs1B9as/jFkacYVMUmN6npugn1ONgkk+rfRTwxPKJnTEexYVjbjx8/nGU3JmnSEJY22fQjJ3f0/kNDImiwLbGVEcm+XazPyv1ksxvPZzoZIUuWKLj8JUEozJ7HwyFJozlJkFyrSwuxI2ppoytCFVbAje8smr0L6oe5bvL2uNmyKOMpzAKZyDB1fQgDtoQgsYKHiGV3hzjPPivDsfi9aSU8wcwx85nz8ZP5Eu</latexit><latexit sha1_base64="lv1r5rk4H8G7tfyfKuBZTbHnuEA=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv3ANpTNdtMu3WzC7kQIof/CiwdFvPpvvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorUczyPtChZhNB9WaW3fnIqvgFVCDQs1B9as/jFkacYVMUmN6npugn1ONgkk+rfRTwxPKJnTEexYVjbjx8/nGU3JmnSEJY22fQjJ3f0/kNDImiwLbGVEcm+XazPyv1ksxvPZzoZIUuWKLj8JUEozJ7HwyFJozlJkFyrSwuxI2ppoytCFVbAje8smr0L6oe5bvL2uNmyKOMpzAKZyDB1fQgDtoQgsYKHiGV3hzjPPivDsfi9aSU8wcwx85nz8ZP5Eu</latexit><latexit sha1_base64="lv1r5rk4H8G7tfyfKuBZTbHnuEA=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv3ANpTNdtMu3WzC7kQIof/CiwdFvPpvvPlv3LY5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrezeueJayNi9YBZwv2IjpQIBaNorUczyPtChZhNB9WaW3fnIqvgFVCDQs1B9as/jFkacYVMUmN6npugn1ONgkk+rfRTwxPKJnTEexYVjbjx8/nGU3JmnSEJY22fQjJ3f0/kNDImiwLbGVEcm+XazPyv1ksxvPZzoZIUuWKLj8JUEozJ7HwyFJozlJkFyrSwuxI2ppoytCFVbAje8smr0L6oe5bvL2uNmyKOMpzAKZyDB1fQgDtoQgsYKHiGV3hzjPPivDsfi9aSU8wcwx85nz8ZP5Eu</latexit>

s0
<latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit><latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit><latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit><latexit sha1_base64="5RglIVPaGIZS566Od0dWx+E2ZAo=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5hKYdDzvp3S2vrG5lZ5u7Kzu7d/4B4etUySacabLJGJ7oTUcCkUb6JAyTup5jQOJW+H49tZvf3EtRGJesRJyoOYDpWIBKNorQfT9/pu1at5c5FV8AuoQqFG3/3qDRKWxVwhk9SYru+lGORUo2CSTyu9zPCUsjEd8q5FRWNugny+6pScWWdAokTbp5DM3d8TOY2NmcSh7YwpjsxybWb+V+tmGF0HuVBphlyxxUdRJgkmZHY3GQjNGcqJBcq0sLsSNqKaMrTpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzZHOi/PufCxaS04xcwx/5Hz+AAKQjZo=</latexit>

Design qc (t) > 0

<latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit>

Under qc(t
) � 0

<latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit>

Tm
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s(t) � sr & T̂ (x, t) � T (x, t) T̂0(x)
t = 0 t > 0.
�
s0, T0(x)

qc(t)
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Objective: Design heat control qc(t) > 0 to achieve

s(t) ! sr as t ! 1

where sr > s1 := s0 + �

↵

R s0
0 (T0(x) � Tm)dx.
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Control Design by BacksteppingControl Design by Backstepping

1. Define (u, X) := (T � Tm, s � sr), and obtain (u, X)-system

2. Develop a state transformation (u, X) ) (w, X) (and its inverse) s.t.
(w, X)-system has stabilizing terms

ut(x, t) =�uxx(x, t)

�kux(0, t) =qc(t)

u(s(t), t) =0

Ẋ(t) =��ux(s(t), t)

<latexit sha1_base64="2q7TggBIe7H034dTVYZa08HgLmw="></latexit>
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Control Design by BacksteppingControl Design by Backstepping

1. Define (u, X) := (T � Tm, s � sr), and obtain (u, X)-system

2. Develop a state transformation (u, X) ) (w, X) (and its inverse) s.t.
(w, X)-system has a stabilizing term

w = u �
Z s(t)

x
k(x, y)u(y, t)dy � �(x � s(t))X

<latexit sha1_base64="MJekQKPTp9+VaSqq2uX3H9GooRQ="></latexit>

u = w �
Z s(t)

x
l(x, y)w(y, t)dy � �(x � s(t))X

<latexit sha1_base64="ItQlfnOhokDbigsFg3YSuPzCx10="></latexit>

wt(x, t) =�wxx(x, t) + ṡ�(x � s)X

�kwx(0, t) =qc(t) � · · ·
w(s(t), t) =0

Ẋ(t) = �cX(t) � �wx(s(t), t)

<latexit sha1_base64="/BrePsKJ2X8bM2oVAkfZCs4n+8o="></latexit>

ut(x, t) =�uxx(x, t)

�kux(0, t) =qc(t)

u(s(t), t) =0

Ẋ(t) = � �ux(s(t), t)

<latexit sha1_base64="BwrXWyUnar0RSq/UJbD4jCJUEN8="></latexit>
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Control Design by BacksteppingControl Design by Backstepping

1. Define (u, X) := (T � Tm, s � sr), and obtain (u, X)-system

2. Develop a state transformation (u, X) ) (w, X) (and its inverse) s.t.
(w, X)-system has stabilizing terms

ut(x, t) =�uxx(x, t)

�kux(0, t) =qc(t)

u(s(t), t) =0

Ẋ(t) = � �ux(s(t), t)

<latexit sha1_base64="BwrXWyUnar0RSq/UJbD4jCJUEN8="></latexit>

wt(x, t) =�wxx(x, t) + ṡ�(x � s)X

�kwx(0, t) = qc(t) � · · ·

w(s(t), t) =0

Ẋ(t) = � cX(t) � �wx(s(t), t)

<latexit sha1_base64="h1K3s0o76kJLPA1MaU8RsLLZJgw="></latexit>

w = u �
Z s(t)

0
k(x, y)u(y, t)dy � �(x � s(t))X

<latexit sha1_base64="w+4A+rQWFIBZ0r25SSovuWjFHX8="></latexit>

u = w �
Z s(t)

0
l(x, y)w(y, t)dy � �(x � s(t))X

<latexit sha1_base64="18gTxvh5qrvNKMU2yUizWZKFgqQ="></latexit>

3. Design qc(t) to cancel redundant · · · terms 11/32



Equivalence with Energy-Shaping  

<latexit sha1_base64="bFzGbdRhzbAqirlaD6c9ROjsp5I="></latexit>

E(t) =
k

↵

Z s(t)

0
(T (x, t)� Tm)dx+

k

�
(s(t)� sr)

Potential energy (as reference error)

satisfies
<latexit sha1_base64="rCDRny3eUJrqSMOeuzWiQNcFzWU=">AAACCnicbVDLSsNAFJ34rPUVdelmtAh1U5Ii6kYoiuCygn1AU8pkMmmHTh7O3AglZO3GX3HjQhG3foE7/8Zpm4W2HrhwOOde7r3HjQVXYFnfxsLi0vLKamGtuL6xubVt7uw2VZRIyho0EpFsu0QxwUPWAA6CtWPJSOAK1nKHV2O/9cCk4lF4B6OYdQPSD7nPKQEt9cwDx5eEph6+LsNxlnqQ4Qt830sdGWCaaQ33zJJVsSbA88TOSQnlqPfML8eLaBKwEKggSnVsK4ZuSiRwKlhWdBLFYkKHpM86moYkYKqbTl7J8JFWPOxHUlcIeKL+nkhJoNQocHVnQGCgZr2x+J/XScA/76Y8jBNgIZ0u8hOBIcLjXLDHJaMgRpoQKrm+FdMB0dmATq+oQ7BnX54nzWrFPq1Ub09Ktcs8jgLaR4eojGx0hmroBtVRA1H0iJ7RK3oznowX4934mLYuGPnMHvoD4/MHBy2ZMg==</latexit>

dE(t)

dt
= qc(t)

The designed BKS controller happens to be
<latexit sha1_base64="8ENcVEmiBqfxbi2XoafRcoT2Qcg=">AAACAHicbZDLSgMxFIYz9VbrbdSFCzfBItSFZaaIuhGKIrisYC/QDkMmzbShSWZMMkIZZuOruHGhiFsfw51vY9rOQqs/BD7+cw4n5w9iRpV2nC+rsLC4tLxSXC2trW9sbtnbOy0VJRKTJo5YJDsBUoRRQZqaakY6sSSIB4y0g9HVpN5+IFLRSNzpcUw8jgaChhQjbSzf3rv3057kEGcVfQQv4DHE8Nqgb5edqjMV/AtuDmWQq+Hbn71+hBNOhMYMKdV1nVh7KZKaYkayUi9RJEZ4hAaka1AgTpSXTg/I4KFx+jCMpHlCw6n7cyJFXKkxD0wnR3qo5msT879aN9HhuZdSESeaCDxbFCYM6ghO0oB9KgnWbGwAYUnNXyEeIomwNpmVTAju/Ml/oVWruqfV2u1JuX6Zx1EE++AAVIALzkAd3IAGaAIMMvAEXsCr9Wg9W2/W+6y1YOUzu+CXrI9vOoKUOg==</latexit>

qc(t) = �cE(t)
which is equivalent to an energy-shaping (ES) control.

<latexit sha1_base64="Q7S11MCkIhcP6RX8rQaydUGBhRE=">AAACIXicbVDLSgMxFM34tr5GXboJFqFdWGaKqBtBdONSwT6gU0smva3BzMPkjlCG+RU3/oobF4q4E3/GdFpQWw8ETs65l5McP5ZCo+N8WjOzc/MLi0vLhZXVtfUNe3OrrqNEcajxSEaq6TMNUoRQQ4ESmrECFvgSGv7d+dBvPIDSIgqvcRBDO2D9UPQEZ2ikjn1830k9FVCelbBMT+jP1SlTuEn3OWY09fKg1JcJZF4f7qmTdeyiU3Fy0GnijkmRjHHZsT+8bsSTAELkkmndcp0Y2ylTKLiErOAlGmLG71gfWoaGLADdTvPgjO4ZpUt7kTInRJqrvzdSFmg9CHwzGTC81ZPeUPzPayXYO26nIowThJCPgnqJpBjRYV20KxRwlANDGFfCvJXyW6YYR1NqwZTgTn55mtSrFfewUr06KJ6ejetYIjtkl5SIS47IKbkgl6RGOHkkz+SVvFlP1ov1bn2MRmes8c42+QPr6xu5PKKs</latexit>

qc(t) = qc(0)e
�ct� 0 constraint is satisfied
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Theoretical Result [1]

[1] S. Koga, M. Diagne, M. Krstic, ``Control and State Estimation of One-Phase Stefan Problem via Backstepping Design", IEEE Transactions on Automatic Control, 
2019

Main Result [1]

Theorem: Under the control law

qc(t) = �c

 
k

↵

Z
s(t)

0
(T (x, t) � Tm)dx +

k

�
(s(t) � sr)

!

where c > 0, the closed-loop system satisfies
• constraints qc(t) > 0, T (x, t) � Tm,
• global exponential stability in the norm ||T � Tm||

2
H1

+ (s � sr)2, i.e.,

s(t) ! sr as t ! 1

[1] S. Koga, M. Diagne, M. Krstic, “Control and State Estimation of One-Phase Stefan Problem via Backstepping
Design”, IEEE Transactions on Automatic Control, 2019
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Experiment using Paraffine [2]

[2] S. Koga, M. Makihata, R. Chen, M. Krstic, and A.P. Pisano ``Energy Storage in Paraffin: A PDE Backstepping Experiment", IEEE Transactions on Control Systems 
Technology, 2020 14/32



Outline

1. Stefan problem: Thermal phase change model of parabolic PDE with a moving boundary 

2. Other Stefan-type systems in chemical and biological models

3. Open problems of parabolic PDEs with moving boundaries
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Lithium-ion batteries [3]Lithium Ion Battery [9]

Positive ElectrodeNegative Electrode Separater

Li+

Voltage: V

State-of-Charge (SoC) Estimation
Given: Input current I and output voltage V

Estimate: Total amount of lithium ion in each electrode.

[9] S. Koga, L. Camacho-Solorio, and M. Krstic “State Estimation of Lithium-Ion Batteries with Phase Transition
Materials via Boundary Observers,” ASME Journal of Dynamic Systems, Measurement, and Control, under review

[3] S. Koga, L. Camacho-Solorio, and M. Krstic ``State Estimation of Lithium-Ion Batteries with Phase Transition Materials via Boundary Observers," ASME Journal 
of Dynamic Systems, Measurement, and Control, under review 16/32



Charge-Discharge Cycle of LFP

LiFePO4 (LFP) is attractive due to thermal stability and cost effectiveness

FePO4 + Li+ + e� ⌦ LiFePO4

↵-phase �-phase

Fig. by A. Khandelwal, et al, JPS 2014
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Fig. by A. Khandelwal, et al, JPS 2014

And careful consideration and research are needed as the open
circuit voltage of some kinds of batteries is related to the charge/
discharge process (history). For example, the charge open circuit
voltage and discharge open circuit voltage of C/LiFePO4 batteries
have hysteretic phenomena (similar to the Ni-MH battery) [62e
65,60], as indicated in Fig. 6. Gerschler et al. introduce some
detailed interesting experiments about hysteretic phenomena of
different battery types including NCM, NCA and LFP types [66].

(4) Battery model-based SOC estimation method

The OCV method need enough rest time to estimate the SOC,
thus it cannot be used while the vehicle is driving. So if we could
on-line estimate the OCV during the driving, then the battery SOC
could be easily derived. To on-line get the battery OCV, a battery
model is needed.

The commonly used battery models include equivalent circuit
model [67], and electrochemical model [68e70]. Usually a battery
model, especially an ECM model, could be expressed as

U ¼ UOC " UR " Up (6)

where U is the battery terminal voltage, Uoc is the battery OCV, UR is
the voltage drop caused by the ohmic resistance, Up is the voltage
drop caused by some internal polarization process. So it is easily to
found the battery OCV if the battery model parameters are known.
Then using the OCV-SOC look-up table derived by experiment, the
battery SOC could be easily found. H.W. He, et al. [71] use this
method and take the Rint model, first-order RC model and the
second-order RC model, respectively, and find that using the
second-order RC model the maximum estimation error is 4.3% and
the mean error is 1.4%.

For this method, the precision and complexity of battery model
are very important. Hua et al. [67] collected 12 commonly used
equivalent circuit models, including the combined model, the Rint
model (simple model), the Rint model with the zero-state hyster-
esis model, the Rint model with the one-state hysteresis model, the
Enhanced Self-correcting (ESC) model with two-state low-pass
filter, the ESC model with four-state low-pass filter, the first-order
RC model, the first-order RC model with one-state hysteresis, the
second-order RC model, the second-order RC model with one-state
hysteresis, the third-order RC model and the third-order RC model

with one-state hysteresis. These models can be used for dynamic
estimation, but the estimation precision is related to the model
precision and the signal collection precision. Hua et al. [67] adopt
experimental data, fit the parameters of the above twelve equiva-
lent circuit models and compare the precision and complexity of
themodels. The research results show that the first-order RCmodel
with one-state hysteresis, which is simple and have high precision,
is more suitable for the voltage estimation of LiFePO4 battery.

Electrochemicalmodel is establishedon thebasis ofmass transfer,
chemical thermodynamics and electrodynamics, and many param-
eters of batteries internal materials are involved which are hard to
obtain with accuracy. Since the huge computations, this model is
usually used for the battery performance analysis and battery design.

(5) Neural network model method

Neural network model method [72,73] estimates SOC through
the use of nonlinear mapping characteristics of the neural network.
When building a model, the neural network method does not have
to take into consideration the details of batteries, and it boasts
universality, suitable for the SOC estimation of all kinds of batteries.
But a great number of training sample data are needed to train the
network and the estimation errors can be greatly influenced by
training data and training methods [73]. Meanwhile the neural
network method requires a lot of computations, which necessitates
powerful processing chips (such as DSP).

(6) Fuzzy logic method

The basic idea for the fuzzy logic method [74e77] is to simulate
the fuzzy thinking of human beings by using the fuzzy logic on the
basis of a great number of test curves, experience and reliable fuzzy
logical theories and eventually to realize SOC prediction [77]. This
method requires first enough understanding of the batteries
themselves and meanwhile relatively large computations.

(7) Other SOC estimation methods based on battery performance

There are such methods as alternating current (AC) imped-
ance method [78e80], direct current (DC) internal resistance
method [81]. In the AC impedance method, a series of small
amplitude sinusoidal alternating currents of different frequencies
are loaded to the batteries and then measure the frequency
response function of the battery system under different
frequencies. SOC of batteries can be obtained through the
analysis of AC impedance. One difference of the DC internal
resistance method from the AC impedance method is that the
former has fixed time interval to calculate the internal resistance
of the batteries and the resistance can be ohm resistance (the
time interval is short enough). The DC internal resistance bears
certain relation to SOC of the batteries and such a relation can
be a basis to obtain SOC of the batteries.

Due to the following reasons:

i. The use of the AC impedance method requires a signal
generator [82], which will increase cost.

ii. The impedance spectroscopy or internal resistance of
batteries has a complicated relationship with SOC and there
are many influencing factors (including the uniformity of
internal resistance).

iii. The internal resistance of batteries is very small and that of the
batteries in vehicle is at the level of milliohm, which makes it
difficult to obtain the internal resistance with accuracy.

iv. The internal resistance of lithium-ion batteries varies little in
a wide range and is hard to recognize, as indicated in Fig. 7.
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Charge-Discharge of LiFePO4/C cells

1 Electrochemical Model for Charge-Discharge with
Phase Change Electrode
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following relations
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1.1 Energy Conservation Law
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ŝ(
t)

 

 

s(t), state
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Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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with phase transition which appears in various situations
of nature and engineering, its control or estimation related
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application to the estimation of sea-ice melting or freezing
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design with a measurement of temperature at one boundary,
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ε = 0.02
ε = 0.04
ε = 0.06

Fig. 2. H
1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(
t)

 

 

s(t), state
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surface concentration 𝑐(𝑅!, 𝑡).
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Observer Design Observer Design

Challenge: Estimation without knowing moving boundary rp(t)

Idea:
(Step1) Design observer bc assuming rp(t) is known,
(Step2) Construct the entire observer (bc, brp) by replacing rp(t) in Step 1 by
brp(t), and add estimator of brp(t)
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The gains (P, Q) are derived via backstepping (BKS) method.
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The gain l is tuned in simulation.Stability proof of estimation error system is still an open problem
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Simulation of BKS Estimation for Lithium-ion Concentration
Simulation of BKS Estimation for Lithium-ion Concentration
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Comparison of SoC Estimation of BKS with EKF
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In this sample simulation, it shows (not best parameters’ choice for each method)

• Our BKS is superior in convergence speed

• EKF is superior in noise attenuation

Comparison of BKS with EKF in SoC Estimation
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Neuron Growth Model of Stefan-type (C. Demir, et al, [4])

[4] C. Demir, S. Koga, and M. Krstic "Neuron Growth Control by PDE Backstepping: Axon Length Regulation by Tubulin Flux Actuation in Soma”, 60th IEEE 
Conference on Decision and Control (CDC), submitted

Fig. 1: Neuron Structure and PDE domain

exponential stability in the spatial H1-norm by applying the
Lyapunov method to the target system. A similar approach
has been done for a moving boundary hyperbolic PDE
modeling a shock-wave arising in a traffic congestion [32].
However, those results for local stability analysis have been
achieved only for hyperbolic PDE systems, even though the
axon growth model proposed in [19] is a nonlinear parabolic
PDE system.

In this paper, we develop a boundary control for a cou-
pled PDE-ODE system with a moving boundary modeling
the dynamics of tubulin concentration and the growth of
axon. First, we solve a steady-state solution of the tubulin
concentration for a given constant axon length, and obtain
a reference error system to stabilize at zero states. Lin-
earization has been applied to the reference error system
to deal with the algebraic nonlinearity, though the resulting
reference error system still owns a geometric nonlinearity.
Then, a backstepping transformation has been employed
to the linearized reference error dynamics. By solving the
gain kernel equations that are derived from backstepping
transformation, the control law is obtained. Finally, applying
the Lyapunov method to the nonlinear target system, a local
exponential stability has been proven, which ensures the
local stability of the original PDE-ODE system of the axonal
growth model.

This paper is structured as follows. Section II introduces
the PDE-ODE model of the axonal growth and the tubulin
concentration with providing the steady-state solution. In
Section III, the control design is presented by the method
of backstepping, and the stability result and its proof are
given in Section IV. The paper ends with the conclusion in
Section V.

II. MODELING OF AXON GROWTH

In this section, we present the mathematical model of the
axon growth governed by a moving boundary PDE, derive a
steady-state solution for a given setpoint of the axon length,
and provide a reference error system to be stabilized.

A. Axon growth model by a moving boundary PDE

Tubulin is a group of proteins which is responsible for
the growth of a newly created axon. Two assumption can be
described to model this responsibility,

• Tubulins are modeled as a homogeneous continuum
because free tubulin molecules along the axon are very
small.

• Only tubulin molecules are responsible for the growth
of axon.

With these assumptions, as proposed in [19], [20], the axonal
growth of a newborn axon by a tubulin can be modelled as

@c
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@
2
c

@x2
(x, t)� a

@c

@x
(x, t)� gc(x, t), (1)

@c

@x
(0, t) =� qs(t), (2)

c(l(t), t) =cc(t), (3)
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dcc

dt
(t) =(a� glc)cc(t)�D

@c

@x
(l(t), t)

� (rgcc(t) + r̃glc)(cc(t)� c1), (4)
dl

dt
(t) =rg(cc(t)� c1), (5)

where the tubulin concentration in the axon is c(x, t). The
variables c and q denote the tubulin concentration and the
flux, respectively. Subscript s is used for the soma of the
neuron, and subscript c is used for the cone of the neuron.
Namely, qs(t) is the concentration flux of tubulin in the
soma, and cc(t) is the concentration of tubulin in the cone.
The length of axon in x-coordinate is l(t). As time passes,
tubulin in the neuron degrade at the constant rate, g. D is
the diffusivity constant, and a is the velocity constant of
tubulin proteins in (1). The cone cross-sectional area A, and
a volume of the growth cone Vc are used in the growth ration
lc =

Vc
A . r̃g is the reaction rate to create microtubules. s̃g is

the disassemble rate which means it is the transformation
rate from microbules to tubulin dimers. rg is the a lumped
parameter defined as rg := r̃gVc

⇢Ag
where the density of

assembled microtubules is ⇢, and Ag is the effective area of
created microtubules growth. The equilibrium of the tubulin
concentration in the cone, c1, which causes the axonal
growth to stop. The control problem to be solved in this
paper is presented in the following statement.

Problem: Develop a feedback control law of qs(t) so that
l(t) converges to ls for a given desired length of the axon
ls > 0, subject to the governing equations (1)–(5).

B. Steady-state solution

To tackle the problem stated above, we first solve a steady-
state solution of the concentration for a given axon length
ls. By setting the time derivatives in (1), (4), and (5) to zero,
one can derive the steady state solution of (1)-(5) as

ceq(x) = c1

⇣
K+e

�+(x�ls) +K�e
��(x�ls)

⌘
, (6)

where
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p
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1

2
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2
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(8)

2nd order dynamics of moving boundary 𝑙(𝑡) w.r.t. Neumann boundary value of PDE "#
"$
(𝑙 𝑡 , 𝑡)

→ %&
%'

𝑡 is one element of ODE state (this is not the case of Stefan problem)

𝑐 𝑥, 𝑡 ⋯ Concentration of Tubulin in axon

• Designed control input for linearized system by BKS

• Showed local stability of reference error, ensuring 𝑙 𝑡 → 𝑙!
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Outline

1. Stefan problem: Thermal phase change model of parabolic PDE with a moving boundary 

2. Other Stefan-type systems in chemical and biological models

3. Open problems of parabolic PDEs with moving boundaries
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1. Trajectory Tracking Control of Stefan Problem
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H

1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Challenge: How to deal with domains’ discrepancy?

𝑇 𝑥, 𝑡 , 𝑠 𝑡 ⋯ State variables
𝑇( 𝑥, 𝑡 , 𝑠( 𝑡 ⋯ Reference trajectories (a known function in time)
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1. Trajectory Tracking Control of Stefan Problem
• If we simply set 𝑢 𝑥, 𝑡 = 𝑇 𝑥, 𝑡 − 𝑇((𝑥, 𝑡), then the boundary condition becomes 

𝑢 𝑠 𝑡 , 𝑡 = 𝑇) − 𝑇( 𝑠 𝑡 , 𝑡
which is a nonlinear function in 𝑠(𝑡). 

• We can linearize at 𝑠 𝑡 ≈ 𝑠((𝑡), which leads to 

• Challenges still remain in: 
o derivation of time-varying BKS and gain kernels,
o ensuring the positivity of control input, 
o (if possible) improving local stability result utilizing linearization.    

• The change of coordinate approach by S. Ecklebe et al [5] might be a good way to go.

170 6 Open Problems

C(t) > 0, ∀t ≥ 0. (6.71)

Taking the time derivative of the condition (6.48) yields

T
(r)
t (sr(t), t)+ ṡr(t)T

(r)
x (sr(t), t) = 0, (6.72)

which, with the help of (6.49), leads to

T
(r)
t (sr(t), t) = β

(
T (r)
x (sr(t), t)

)2
. (6.73)

Therefore, by (6.70), it turns out

A(t) = β

α

(
T (r)
x (sr(t), t)

)2
> 0, ∀t ≥ 0. (6.74)

Then, the linearized system is described as

ut (x, t) =αuxx(x, t), 0 < x < s(t) (6.75)

−kux(0, t) =qc(t) − q(r)c (t), (6.76)

u(s(t), t) =C(t)X(t), (6.77)

Ẋ(t) =A(t)X(t) − βux(s(t), t), (6.78)

which is an unstable system due to the positivity of A(t) shown in (6.74). Since
the coefficients A(t) and C(t) are time-dependent, the backstepping transforma-
tion should also incorporate the time-dependent gain kernel functions, which is
described by

w(x, t) = u(x, t) −
∫ s(t)

x
k(x, y, t)u(y, t)dy − φ(x − s(t), t)X(t). (6.79)

Further Challenges

The time-dependency of the gain kernel functions makes the problem much more
complicated and challenging, which we have not derived yet so far. Note that, even
if we can derive the time-dependent backstepping transformation and its gain kernel
functions, the stability result holds locally, because we have applied linearization.
Moreover, guaranteeing the positivity of the control input is not ensured yet. There
might be another better approach which figures out all the remaining problems.
For those reasons, the trajectory tracking of the Stefan system remains as an open
problem.

[5] Ecklebe, S., Woittennek, F., Frank-Rotsch, C., Dropka, N., & Winkler, J. (2021). “Toward Model-Based Control of the Vertical Gradient Freeze Crystal Growth 
Process”. IEEE Transactions on Control Systems Technology. 26/32



2. Tumor Growth Model of Stefan-type [6] 

Charge-Discharge of LiFePO4/C cells

1 Electrochemical Model for Charge-Discharge with

Phase Change Electrode

Let cs(r, t), cp(r, t), be a concentration of the source and product of the
chemical material, and s(t) be the interface between them. Then, we have
following relations
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@rcs(0, t) = 0, cs(s(t), t) = ceqs (2)

@tcp(r, t) =
↵p

r2
@r
�
r2@rcp(r, t)

�
, s(t) < r < R (3)

@rcp(R, t) = � in(t)

FDp
, cp(s(t), t) = ceqp (4)
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1.1 Energy Conservation Law

Taking integration of PDE in whole domain, we have
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1.2 Change of Variables

Define new coordinates and new variables such that

x = R� r, l(t) = R� s(t), (7)
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(8)
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d

dt

 Z s(t)

0
rcs(r, t)dr +

Z R

s(t)
rcp(r, t)dr �

1

2�
s(t)2

!

= ↵sr@rcs(r, t)|s(t)0 + ↵s

Z s(t)

0
@rcs(r, t)dr + ↵pr@rcp(r, t)|Rs(t) + ↵p

Z R

s(t)
@rcp(r, t)dr � s(t)(↵s@rcs(s(t), t)� ↵p@rcp(s(t), t))

= ↵s(cs(s(t), t)� cs(0, t)) + ↵pR@rcp(R, t) + ↵p(cp(R, t)� cp(s(t), t)) (6)

1.2 Change of Variables

Define new coordinates and new variables such that

x = R� r, l(t) = R� s(t), (7)

u(x, t) = r(cp(r, t)� ceq), v(x, t) = r(cs(r, t)� ceq), X(t) = (s2r � s(t)2)/2�
(8)

1

tumor

where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion

coe�cient, �B is a constant nutrient concentration in vasculature (blood

vessel), and � is the rate of blood-tissue transfer per unit length (assumed

constant). For the avascular case we have � = 0. The domain of PDE is

governed by the tumor radius R(t) which evolves in time. The boundary

conditions are described as

@�

@r
(0, t) =0, (2)

�(R(t), t) =�̄. (3)

Assuming that similar e↵ects govern the evolution of the inhibitor in the

tumor as in [1, 4], the following reaction-di↵usion equation is also obtained:

@�

@t
(r, t) =

D2

r2
@

@r

✓
r2

@�

@r
(r, t)

◆
+ g2(�,�), 0 < r < R̄ (4)

where �(r, t) is inhibitor concentration, D2 is the di↵usion coe�cient of

inhibitor, and R̄ is the outer radius where the inhibitor is injected. We

consider the boundary control of the inhibitor concentration from the outside

the tumor radius. The boundary conditions are described as

�(R̄, t) =U(t), (5)

@�

@r
(0, t) =0, (6)

(6) is given by the symmetric condition. Denoting by S(�,�) the cell pro-

liferation rate at a point inside the tumor, mass conservation yields the

evolution of the tumor radius

1

3
R(t)2Ṙ(t) =

Z R(t)

0
S(�,�)r2dr. (7)

Referring to [4], the cell proliferation rate is formulated by

S(�,�) = µ(�(r, t)� �̃)� ⌫�(r, t), (8)

where �̃ < �̄. To simplify the problem, we impose a following assumptions.

Assumption 1. The tumor is on avascular phase, i.e. � = 0.

Assumption 2. The nutrient concentration is on a steady state, �(r, t) = �̄.
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Abstract : We consider the tumor growth model described by moving

boundary PDE proposed in [1, 4]. Based on our recent contribution in [2],

we aim to design the backstepping control law for the model.

1 Introduction

[1] proposed a model of the growth of nonnecrotic (living cells) and vascu-
larized (receiving blood supply through vessels) tumor in the absence and

presence of inhibitors. The tumor’s evolution is represented in the form of

free-boundary problem whereby its growth is determined by the level of a

di↵using nutrient concentration. The analysis of their model was extended

and sometimes rectified by [3], specifically on the existence and uniqueness

of the system in the case where the birth rate of cells exceeds their death

rate at the tumor’s boundary in the absence of the inhibitor. The analysis

was extended by [4] to the presence of inhibitor. For a practical antiangionic

therapy, [5] introduced a theory for tumor growth under angiogenic inhibitor

control which is both explanatory and clinically implementable.

2 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-

pled system on moving boundary:

@�

@t
(r, t) =

D1

r2
@

@r

✓
r2

@�

@r
(r, t)

◆
+ �(�B � �(r, t)) + g1(�,�),

0 < r < R(t). (1)

1

Inhibitor
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β(R̄, t) =U(t), (12.5)

∂β

∂r
(0, t) =0. (12.6)

Let S(σ,β) denote the cell proliferation rate at a point inside the tumor. Then, mass
conservation yields the evolution of the tumor radius governed by

1
3
R(t)2Ṙ(t) =

∫ R(t)

0
S(σ,β)r2dr. (12.7)

Referring to [49], the cell proliferation rate is formulated by

S(σ,β) = µ(σ (r, t) − σ̃ ) − νβ(r, t), (12.8)

where σ̃ < σ̄ . To simplify the problem, we impose the following assumptions.

Assumption 12.1 The tumor is in an avascular phase, i.e., Γ = 0.

Assumption 12.2 Referring to [49], the reaction terms are simplified as

g1(σ,β) = − λ0σ (r, t) − γ1β(r, t), (12.9)

g2(σ,β) = − γ2β(r, t). (12.10)

Under Assumptions 12.1 and 12.2, the tumor and inhibitor dynamics (12.1)–(12.7)
are described by the following system:

∂σ

∂t
(r, t) =D1

r2
∂

∂r

(
r2
∂σ

∂r
(r, t)

)
− λ0σ (r, t) − γ1β(r, t), 0 < r < R(t),

(12.11)

∂β

∂t
(r, t) =D2

r2
∂

∂r

(
r2
∂β

∂r
(r, t)

)
− γ2β(r, t), 0 < r < R̄, (12.12)

∂σ

∂r
(0, t) =0, (12.13)

σ (R(t), t) =σ̄ , (12.14)

β(R̄, t) =U(t), (12.15)

∂β

∂r
(0, t) =0, (12.16)

1
3
R(t)2Ṙ(t) =

∫ R(t)

0
(µ(σ (r, t) − σ̃ ) − νβ(r, t))r2dr. (12.17)

The objective of our work is to design the injecting inhibitor concentration U(t) to
prevent the tumor’s evolution by achieving the desired size Rr.
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R(t)2Ṙ(t) =

∫ R(t)

0
(µ(σ (r, t) − σ̃ ) − νβ(r, t))r2dr. (12.17)

The objective of our work is to design the injecting inhibitor concentration U(t) to
prevent the tumor’s evolution by achieving the desired size Rr.

[6] Byrne, H. M., & Chaplain, M. A. J., “Growth of nonnecrotic tumors in the presence and absence of inhibitors”, Mathematical biosciences, 1995.

𝜎(𝑟, 𝑡)⋯ nutrient concentration of tumor
𝛽(𝑟, 𝑡)⋯ inhibitor concentration
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2. Tumor Growth Model of Stefan-type 
Deriving the reference-error system and taking linearization leads to

304 12 Open Problems

Linearized Reference Error System

Taking the linearization of the nonlinear function h(R(t)) defined by (12.41) around
X = 0, one can obtain

h(R(t)) ≈h|X=0 +
∂h

∂X

∣∣∣∣
X=0

X(t),

=h(Rr)+
∂R

∂X

∂h

∂R

∣∣∣∣
X=0

X(t),

=σ̄ − σeq(Rr)+
∂
(
3X + R3

r
)1/3

∂X

∣∣∣∣
X=0

h′(Rr)X(t),

= −
(
3X + R3

r

)−2/3
∣∣∣∣
X=0
σ ′
eq(Rr)X(t),

= −
σ ′
eq(Rr)

R2
r

X(t), (12.43)

where (12.21) is applied. In a similar manner, the linearization of f (R(t)) given in
(12.42) leads to

f (R(t)) ≈f (Rr)+ R−2
r f ′(Rr)X(t),

=R−2
r (µ(σeq(Rr) − σ̃ ) − νβeq(Rr))R

2
rX(t)

=(µ(σ̄ − σ̃ ) − νβeq(Rr))X(t). (12.44)

Thus, by defining

C := −
σ ′
eq(Rr)

R2
r

, (12.45)

A :=µ(σ̄ − σ̃ ) − νβeq(Rr), (12.46)

the linearized system of (12.34)–(12.40) is obtained as

∂v

∂t
(r, t) =D1

r2
∂

∂r

(
r2
∂v

∂r
(r, t)

)
− λ0v(r, t) − γ1u(r, t), 0 < r < R(t),

(12.47)

∂u

∂t
(r, t) =D2

r2
∂

∂r

(
r2
∂u

∂r
(r, t)

)
− γ2u(r, t), 0 < r < R̄, (12.48)

∂v

∂r
(0, t) =0, (12.49)12.2 Axonal Growth 305

v(R(t), t) =CX(t), (12.50)

u(R̄, t) =U(t), (12.51)

∂u

∂r
(0, t) =0, (12.52)

Ẋ(t) =AX(t)+
∫ R(t)

0
(µv(r, t) − νu(r, t))r2dr. (12.53)

An important characteristic of the system (12.47)–(12.53) lies in the dynamics
of ODE (12.53), which has a distributed effect of both the nutrient and inhibitor
concentration profiles. The backstepping method for such a kind of system has
been developed in [13] to stabilize a linear ODE driven by a distributed effect of
a diffusion-advection PDE with a fixed domain. The extension of the approach to
the tumor growth process governed by (12.47)–(12.53) is an exciting open problem.

12.2 Axonal Growth

Neuroscience has become one of the most influential areas of biology in the last
decades, as scientists pursue the understanding of the functionality of perception and
brain as nervous systems [92]. Each neuron transmits electric signals propagated
through the axon. Computational modeling for describing the dynamics of such
a neuron and axon has been studied in the literature. A first work on the Stefan-
type PDE model of the axonal growth has been employed in [145], and the broader
computational modeling for finally simulating the morphology of neurons has been
developed in [80] with showing the experimental validation. In this section, we show
a more recent work on the Stefan model for axonal growth developed in [59, 60] and
suggest some potential methodology for boundary control.

Model Description

In neuronal physiology, it has been verified that the growth of a newborn axon is
directly driven by the presence of the group of proteins called “tubulin.” There are
two assumptions for modeling the axonal growth given here. One is that the tubulin
is the only substance involved in the growth of an axon. Another assumption is that
the molecules of free tubulin are so small that we can model it as a homogeneous
continuum. The one-dimensional coordinate x is given along the axon, and the
length of the axon is denoted by l(t). Let c(x, t) be the concentration of tubulin
along the axon, cs(t) be the concentration of tubulin in the soma, and cc(t) be
the concentration of tubulin in the cone. The degradation of the tubulin is caused
along the axon at the constant rate g. The flux of tubulin is determined by active

𝑢 − PDE

𝑣 − PDE

𝑋 − ODE
Control 𝑈(𝑡)

The problem is open even for 
analogous fixed-domain PDE system.
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3. Control Synthesis of BKS-ES for Stabilization with Constraint

Existing results and approaches for Stefan systems
System Control Design Constraint Stability

1-Phase Stefan BKS = ES Guaranteed Guaranteed
1-Phase Stefan with advection BKS Happened to be 

shown
Guaranteed 

2-Phase Stefan ES Guaranteed Happened to be shown

Question: How can we design control guaranteeing both stability and constraint? 
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3. Control Synthesis of BKS-ES for Stabilization with Constraint

Idea: BKS-ES QP formulation, analogously to CLF-CBF QP formulation in safety control of ODEs 

Definition 2. Let C ⇢ D ⇢ Rn be the superlevel set of a
continuously differentiable function h : D ! R, then h is
a control barrier function (CBF) if there exists an extended
class K1 function ↵ such that for the control system (1):

sup
u2U

[Lfh(x) + Lgh(x)u] � �↵(h(x)). (7)

for all x 2 D.

Remark 3. Note that, as discussed in Section I, the first
notion of a control barrier function [20] was defined in terms
of what are now termed reciprocal barrier functions. These
blow-up on the boundary, hence the use of the term “barrier”:

inf
x2Int(C)

B(x) � 0, lim
x!@C

B(x) = 1. (8)

wherein the control barrier function condition (7) becomes:

inf
u2U

[LfB(x) + LgB(x)u]  ↵

✓
1

B(x)

◆
. (9)

This class of barrier functions can be more suitable for some
applications, but typically barrier functions, h, are preferable
since they are well defined outside of C.

Remark 4. The idea of extending set invarience conditions,
i.e., the condition that ḣ � 0 for all x 2 @C, to all of C
was first considered in [14] in the form of the following
condition: ḣ � �h for all x 2 C. This can be viewed as a
very special case of a CBF wherein ↵(r) = r in (7).

Guaranteed Safety via CBFs. We can consider the set
consisting of all control values that render C safe:

Kcbf(x) = {u 2 U : Lfh(x) + Lgh(x)u+ ↵(h(x)) � 0}.
(10)

That is, as in the case of CLFs, we can quantify the set of
all control inputs at a point x 2 D that keep the system safe.

The main result of [21], and the main result with regard
to control barrier functions, is that the existence of a control
barrier function implies that the control system is safe:

Theorem 2. Let C ⇢ Rn be a set defined as the superlevel set
of a continuously differentiable function h : D ⇢ Rn ! R.
If h is a control barrier function on D and @h

@x (x) 6= 0
for all x 2 @C, then any Lipschitz continuous controller
u(x) 2 Kcbf(x) for the system (1) renders the set C safe.
Additionally, the set C is asymptotically stable in D.

Remark 5. The condition that the gradient of h not vanish
on the boundary is equivalent to requiring that 0 is a regular
value of h [6]. Note that this condition was not explicitly
stated in [21], but the proof of this result utilizes Nagumo’s
theorem [4] which requires this regularity condition [6].

Remark 6. It is important to stress that this result not only
guarantees that the safe set C is invariant, but makes the
set C asymptotically stable. This has beneficial consequences
with regard to practical implementation. While a system will
not formally leave the safe set C, noise and modeling errors
might force the system to leave this set. As a result of the

main CBF theorem, controllers in Kcbf(x) will drive the
system back to the set C.

Necessity for Safety. Finally, we note that control barrier
functions provide the strongest possible conditions for safety
in that they are necessary and sufficient given reasonable
assumptions on C [21]:

Theorem 3. Let C be a compact set that is the superlevel
set of a continuously differentiable function h : D ! R with
the property that @h

@x (x) 6= 0 for all x 2 @C. If there exists a
control law u = k(x) that renders C safe, i.e., C is forward
invariant with respect to (6), then h|C : C ! R is a control
barrier function on C.

C. Optimization Based Control
Having established that control barrier functions give

(necessary and sufficient) conditions on safety, the question
becomes: how does one synthesize controllers? Importantly,
we wish to do so in a minimally invasive fashion, i.e., modify
an existing controller in a minimal way so as to guarantee
safety. This naturally leads to optimization based controllers:
Safety-Critical Control. Suppose we are given a feedback
controller u = k(x) for the control system (1) and we wish to
guarantee safety. Yet it may be the case that k(x) /2 Kcbf(x)
for some x 2 D. To modify this controller in a minimal
way so as to guarentee safety, we start by noticing that the
conditions on safety given in (10) are affine in u. Thus, we
can consider the following Quadratic Program (QP) based
controller that finds the minimum perturbation on u:

u(x) = argmin
u2Rm

1

2
ku� k(x)k2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u � �↵(h(x))

where here we assumed that U = Rm. Thus, when there
are no input constraints, since we have a single inequality
constraint the CBF-QP has a closed-form solution (per the
KKT conditions [39]) given by the min-norm controller; this
was first utilized in the context of CLFs [40], [37].
Unifying with Lyapunov. The QP based formulation of
safety-critical controllers suggests a means in which to unify
safety and stability. In fact, optimization-based controllers
were first utilized in the context of CLFs exactly for the
purpose of multi-objective nonlinear control [41], e.g., com-
bining stability with torque constraints [42]. Concretely, we
consider the following QP based controller:

u(x) = argmin
(u,�)2Rm+1

1

2
uTH(x)u+ p�2 (CLF-CBF QP)

s.t. LfV (x) + LgV (x)u  ��(V (x)) + �

Lfh(x) + Lgh(x)u � �↵(h(x))

where here H(x) is any positive definite matrix (pointwise
in x), and � is a relaxation variable that ensures solvability
of the QP as penalized by p > 0 (i.e., to ensure the QP has a
solution one must relax the condition on stability to guarantee
safety). In [21] it was established that this controller is
Lipschitz continuous.
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based controllers from CBFs and conclude by describing how
they can be unified with CLFs.

Throughout this paper, we will suppose that we have a
nonlinear affine control system:

ẋ = f(x) + g(x)u, (1)

with f and g locally Lipschitz, x 2 D ⇢ Rn and u 2 U ⇢
Rm is the set of admissible inputs.

A. Motivation: Control Lyapunov Functions
To motivate safety for systems of this form, and hence

control barrier functions, we begin by considering the famil-
iar objective of stabilizing the system. Suppose we have the
control objective of (asymptotically) stabilizing the nonlinear
control system (1) to a point x⇤ = 0, i.e., driving x(t) ! 0.
In a nonlinear context, this can be achieved—and, in fact,
understood—by equivalently finding a feedback control law
that drives a positive definite function, V : D ⇢ Rn ! R�0,
to zero. That is, if

9 u = k(x) s.t. V̇ (x, k(x))  ��(V (x)), (2)

where

V̇ (x, k(x)) = LfV (x) + LgV (x)k(x),

then the system is stabilizable to V (x⇤) = 0, i.e., x⇤ = 0.
Note that here � : R�0 ! R�0 is a class K function
defined on the entire real line for simplicity, i.e., � maps
zero to zero, �(0) = 0, and it is strictly monotonic: for
all r1, r2 2 R�0, r1 < r2 implies that �(r1) < �(r2).
Thus, the process of stabilizing a nonlinear system can be
understood as finding an input that creates a one-dimensional
stable system given by the Lyapunov function: V̇  ��(V ),
wherein the comparison lemma (see, e. g., [33]) implies that
the full-order nonlinear system (1) is thus stable under the
control law u = k(x).

The above observations motivate the notion of a control
Lyapunov function wherein a function V is shown to stabilize
the system without the need to explicitly construct the
feedback controller u = k(x). That is, as first observed
by Sontag and Artstein [34], [35], [36], we only need a
controller to exist that results in the desired inequality on
V̇ . Concretely, V is a control Lyapunov function (CLF) if it
is positive definite and satisfies:

inf
u2U

[LfV (x) + LgV (x)u]  ��(V (x)), (3)

where � is again a class K function. The importance of this
definition is that it allows for us to consider the set of all
stabilizing controllers for every point x 2 D:

Kclf(x) := {u 2 U : LfV (x) + LgV (x)u  ��(V (x))}.
(4)

This is an affine constraint in u and thus will allow for
the formulation of optimization based controllers. It also
elucidates conditions on when V is a CLF; for example,
if U = Rm, it is easy to verify that

LgV (x) = 0 =) LfV (x)  ��(V (x))

=) Kclf(x) 6= ;

and thus there are stabilizing controllers. More generally, we
have the following central stabilization result for CLFs [37].

Theorem 1. For the nonlinear control system (1), if there
exists a control Lyapunov function V : D ! R�0, i.e., a
positive definite function satisfying (3), then any Lipschitz
continuous feedback controller u(x) 2 Kclf(x) asymptoti-
cally stabilizes the system to x⇤ = 0.

B. Control Barrier Functions

Unlike stability which involves driving a system to a
point (or a set), safety can be framed in the context of
enforcing invariance of a set, i.e., not leaving a safe set. In
particular, we consider a set C defined as the superlevel set
of a continuously differentiable function h : D ⇢ Rn ! R,
yielding:

C = {x 2 D ⇢ Rn : h(x) � 0},
@C = {x 2 D ⇢ Rn : h(x) = 0}, (5)

Int(C) = {x 2 D ⇢ Rn : h(x) > 0}.

We refer to C as the safe set.
Safety. Let u = k(x) be a feedback controller such that the
resulting dynamical system

ẋ = fcl(x) := f(x) + g(x)k(x) (6)

is locally Lipschitz. To formally define safety, due to the
locally Lipschitz assumption, for any initial condition x0 2
D there exists a maximum interval of existence I(x0) =
[0, ⌧max) such that x(t) is the unique solution to (6) on I(x0);
in the case when fcl is forward complete [33], ⌧max = 1.
This allows us to define safety:

Definition 1. The set C is forward invariant if for every x0 2
C, x(t) 2 C for x(0) = x0 and all t 2 I(x0). The system
(6) is safe with respect to the set C if the set C is forward
invariant.

Control Barrier Functions (CBFs). Using control Lya-
punov functions as motivation, we wish to generalize to the
concept of safety. Yet, one must be careful about directly
generalizing Lyapunov (as done, in particular, in [38]). If
there exists a CLF V such that V (x) = 0 =) x 2 C and
V has a superlevel set ⌦c = {x 2 D : V (x)  c} ⇢ C, then
the corresponding controllers in (4) will render ⌦c invariant,
and hence C safe. Nevertheless, this is overly restrictive as
it would render every sublevel set invariant, i.e., ⌦c0 for all
c0 < c. Rather, we wish to enforce set invariance without
requiring a positive definite function, i.e., for h to be a
control barrier function it should render C invariant but not
its sublevel sets.

This motivates the formulation of control barrier
functions. Before defining these, we note that an
extended class K1 function is a function ↵ : R ! R that
is strictly increasing and with ↵(0) = 0; that is, extended
class K1 functions are defined on the entire real line:
R = (�1,1). This allows us to define [21], [22]:
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Safety control of nonlinear ODEs by Ames, et al [7]

Combining with port-Hamiltonian formulation proposed by Vincent, et al [8] is
an interesting direction



Summary

• Control for Stefan problem, a parabolic PDE with a moving boundary modeling the 
thermal phase change, has been developed via backstepping/energy-shaping.

• Stefan-type systems have been utilized for various application models, including 
chemical reaction and biological growth process. 

• Numerous open problems exist from both control-theoretic and application-driven 
perspectives.

• Fundamental challenge lies in, how to deal with geometric nonlinearity of moving 
boundary.  
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