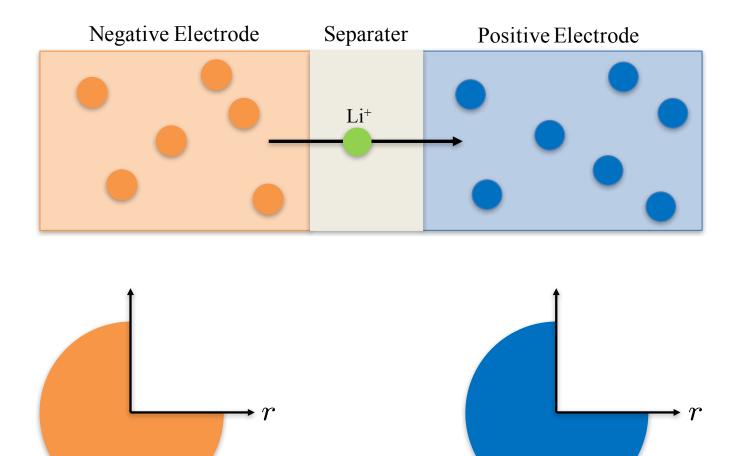

State Estimation of Lithium-Ion Batteries with Phase Transition Materials

Shumon Koga, Leobardo Camacho-Solorio, Miroslav Krstic


UCSD, Mechanical and Aerospace Engineering

DSCC 10/11/2017

Lithium Ion Battery

Single Particle Model

Phase Transition Material

LiFePO₄ (LFP)

 \cdots strong candidate as positive electrode in lithium ion batteries

Phase Transition Material

LiFePO₄ (LFP)

 \cdots strong candidate as positive electrode in lithium ion batteries

Merits

(i) thermal stability(ii) cost effectiveness(iii) long cycle life

Demerits

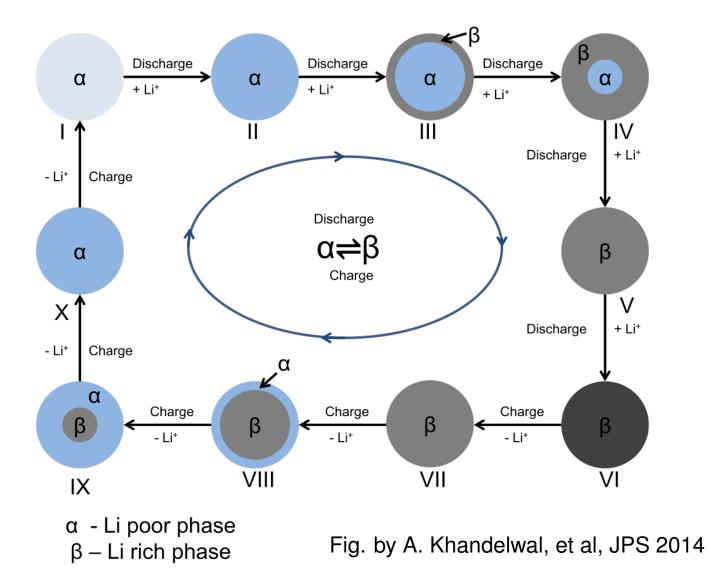
(i) low electronic conductivity(ii) low rate capability

Phase Transition Material

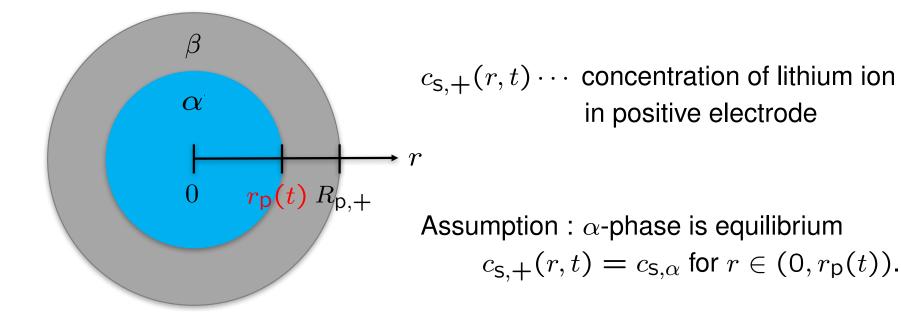
LiFePO₄ (LFP)

 \cdots strong candidate as positive electrode in lithium ion batteries

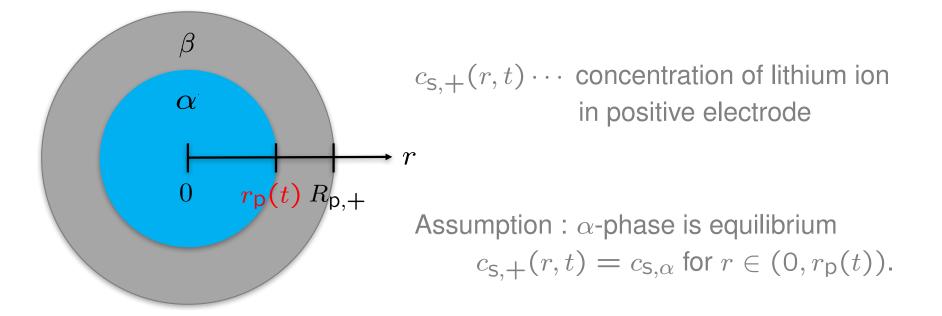
Merits (i) thermal stability (ii) cost effectiveness (iii) long cycle life Demerits (i) low electronic conductivity (ii) low rate capability


Structural phase transition is caused by lithium intercalation/extraction

 $FePO_4 + Li^+ + e^- \rightleftharpoons LiFePO_4$

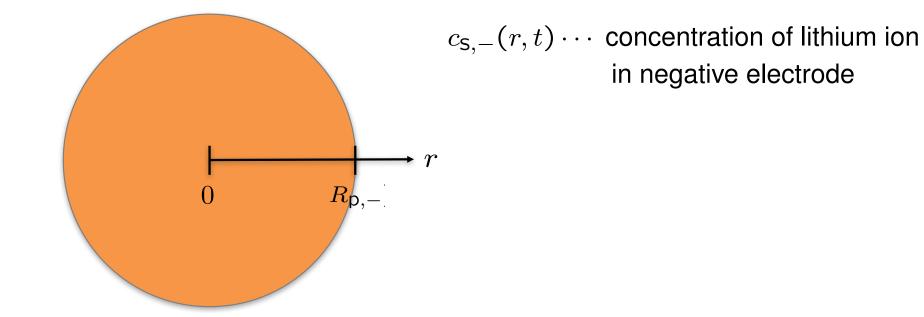

lpha-phase

 β -phase


Charge-Discharge Cycle of LFP

Discharge Model of LFP (by Srinivasan and Newman 2004)

Discharge Model of LFP (by Srinivasan and Newman 2004)


$$\frac{\partial c_{\mathsf{s},+}}{\partial t}(r,t) = \frac{D_{\mathsf{s},+}}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial c_{\mathsf{s},+}}{\partial r}(r,t) \right], \quad r \in (r_{\mathsf{p}}(t), R_{\mathsf{p},+})$$

$$c_{\mathsf{s},+}(r_{\mathsf{p}}(t),t) = c_{\mathsf{s},\beta},$$

$$D_{\mathsf{s},+} \frac{\partial c_{\mathsf{s},+}}{\partial r}(R_{\mathsf{p},+},t) = -j_{\mathsf{n},+}(t),$$

$$(c_{\mathsf{s},\beta} - c_{\mathsf{s},\alpha}) \frac{dr_{\mathsf{p}}(t)}{dt} = -D_{\mathsf{s},+} \frac{\partial c_{\mathsf{s},+}}{\partial r}(r_{\mathsf{p}}(t),t).$$

Discharge Model of Negative Electrode

$$\frac{\partial c_{\mathsf{s},-}}{\partial t}(r,t) = \frac{D_{\mathsf{s},-}}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial c_{\mathsf{s},-}}{\partial r}(r,t) \right], \quad r \in (0, R_{\mathsf{p},-})$$
$$\frac{\partial c_{\mathsf{s},-}}{\partial r}(0,t) = 0,$$
$$D_{\mathsf{s},-} \frac{\partial c_{\mathsf{s},-}}{\partial r}(R_{\mathsf{p},-},t) = -j_{\mathsf{n},-}(t),$$

Mass Conservation of Total Lithium

Lemma

Total amount of lithium-ion

$$n_{\rm Li}(t) = A_{-} \int_{0}^{R_{\rm p,-}} c_{\rm s,-}(r,t) r^2 dr + A_{+} \int_{0}^{R_{\rm p,+}} c_{\rm s,+}(r,t) r^2 dr,$$

where
$$A_i = \frac{3\epsilon_{s,i}L_i}{R_{p,i}^3}$$
 for $i \in \{-,+\}$, is conserved, i.e., $\frac{d}{dt}n_{Li}(t) = 0$.

State Estimation for Phase Transition Positive Electrode

Measurements $\cdots c_{ss,+}(t) := c_{s,+}(R_{p,+},t), r_p(t),$

State Estimation for Phase Transition Positive Electrode

Measurements
$$\cdots$$
 $c_{ss,+}(t) := c_{s,+}(R_{p,+},t), r_p(t),$

Observer

$$\begin{aligned} \frac{\partial \widehat{c_{\mathrm{s},+}}}{\partial t}(r,t) &= \frac{D_{\mathrm{s},+}}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial \widehat{c_{\mathrm{s},+}}}{\partial r}(r,t) \right] \\ &+ P(r_{\mathrm{p}}(t),r) \left[c_{\mathrm{ss},+}(t) - \widehat{c_{\mathrm{s},+}}(R_{\mathrm{p},+},t) \right], \\ \widehat{c_{\mathrm{s},+}}(r_{\mathrm{p}}(t),t) &= c_{\beta}, \\ D_{\mathrm{s},+} \frac{\partial \widehat{c_{\mathrm{s},+}}}{\partial r}(R_{\mathrm{p},+},t) &= -j_{\mathrm{n},+}(t) \\ &+ Q(r_{\mathrm{p}}(t)) \left[c_{\mathrm{ss},+}(t) - \widehat{c_{\mathrm{s},+}}(R_{\mathrm{p},+},t) \right], \end{aligned}$$

State Estimation for Phase Transition Positive Electrode

Measurements
$$\cdots$$
 $c_{ss,+}(t) := c_{s,+}(R_{p,+},t), r_p(t),$

Observer

$$\begin{aligned} \frac{\partial \widehat{c_{\mathrm{s},+}}}{\partial t}(r,t) &= \frac{D_{\mathrm{s},+}}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial \widehat{c_{\mathrm{s},+}}}{\partial r}(r,t) \right] \\ &+ P(r_{\mathrm{p}}(t),r) \left[c_{\mathrm{s},+}(t) - \widehat{c_{\mathrm{s},+}}(R_{\mathrm{p},+},t) \right], \\ \widehat{c_{\mathrm{s},+}}(r_{\mathrm{p}}(t),t) &= c_{\beta}, \\ D_{\mathrm{s},+} \frac{\partial \widehat{c_{\mathrm{s},+}}}{\partial r}(R_{\mathrm{p},+},t) &= -j_{\mathrm{n},+}(t) \\ &+ Q(r_{\mathrm{p}}(t)) \left[c_{\mathrm{s},+}(t) - \widehat{c_{\mathrm{s},+}}(R_{\mathrm{p},+},t) \right], \end{aligned}$$

The gains *P*, *Q* are derived via backstepping design for *moving boundary PDEs*.

Theorem The observer with gains

$$P(r_{p}(t),r) = D_{s,+}\overline{\lambda}^{2} \frac{R_{p,+}}{r} l(t)s(t) \frac{I_{2}(z(t))}{z(t)},$$
$$Q(r_{p}(t)) = \frac{D_{s,+}}{R_{p,+}} \left(\frac{\overline{\lambda}}{2}s(t) + 1\right),$$

where

$$\overline{\lambda} = \frac{\lambda}{D_{s,+}},$$

$$s(t) = R_{p,+} - r_p(t), \quad l(t) = r - r_p(t),$$

$$z(t) = \sqrt{\overline{\lambda} \left[s(t)^2 - l(t)^2 \right]}.$$

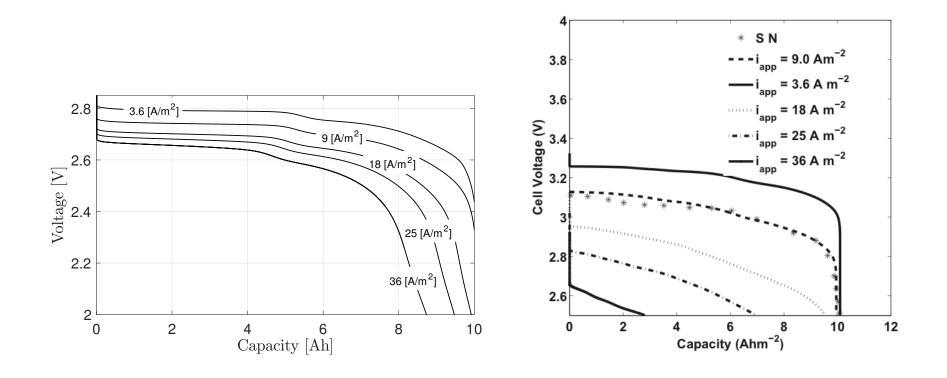
makes the observer error system glo. exp. stable in

$$\int_{r_{\mathsf{p}}(t)}^{R_{\mathsf{p},+}} r^2 \left(c_{\mathsf{S},+}(r,t) - \widehat{c_{\mathsf{S},+}}(r,t) \right)^2 dr.$$

State Estimation for Negative Electrode

Measurements · · · $c_{s,+}(R_{p,+},t), r_p(t), \frac{\partial c_{s,+}}{\partial r}(r_p(t),t)$

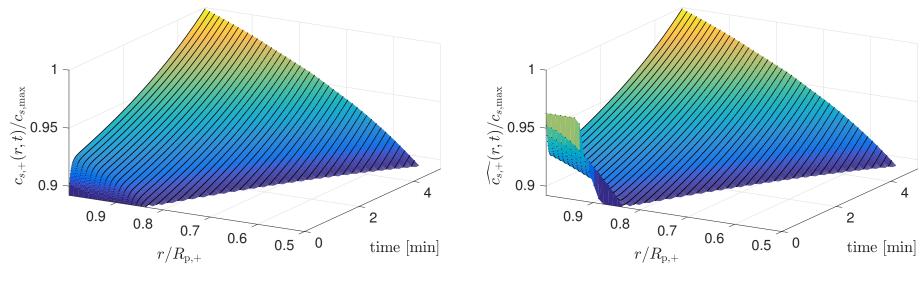
State Estimation for Negative Electrode


Measurements · · ·
$$c_{s,+}(R_{p,+},t), r_p(t), \frac{\partial c_{s,+}}{\partial r}(r_p(t),t)$$

Observer

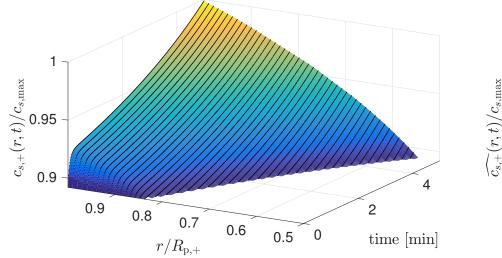
$$\frac{\partial \widehat{c_{\mathsf{s},-}}}{\partial t}(r,t) = \frac{D_{\mathsf{s},-}}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial \widehat{c_{\mathsf{s},-}}}{\partial r}(r,t) \right] + P_-(r_\mathsf{p}(t)) \widehat{c_{\mathsf{s},+}}(R_{\mathsf{p},+},t) + F(r_\mathsf{p}(t)) \frac{\partial \widehat{c_{\mathsf{s},+}}}{\partial r}(r_\mathsf{p}(t),t), \frac{\partial \widehat{c_{\mathsf{s},-}}}{\partial r}(0,t) = 0, D_{\mathsf{s},-} \frac{\partial \widehat{c_{\mathsf{s},-}}}{\partial r}(R_{\mathsf{p},-},t) = -j_{\mathsf{n},-}(t) + Q_-(r_\mathsf{p}(t))\widehat{c_{\mathsf{s},+}}(R_{\mathsf{p},+},t).$$

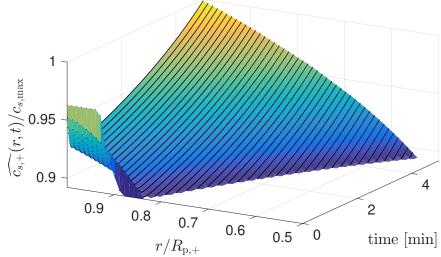
with the gains (P_-, F, Q_-) designed to conserve $\hat{n}_{Li}(t)$ achieves $\hat{c}_{S,-} \rightarrow c_{S,-}$


Simulation Test of Voltage Plot

Our simulation

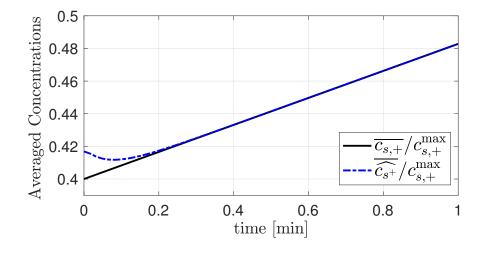
A. Khandelwal, et al, JPS 2014


Simulation of SoC (State-of-Charge) Estimation



True profile

Estimate profile


Simulation of SoC (State-of-Charge) Estimation

True profile

Estimate profile

Future Work

• State estimation of two-phase (i.e., α phase is dynamic)

• State estimation without $r_p(t)$ (phase boundary radius)

• State and parameter estimation